Neutrino reactions in astrophysics Nuclear Physics aspects of core-collapse supernovae

Gabriel Martínez Pinedo

Core evolution (Outline)

Presupernova evolution

- T = 0.1-0.8 MeV, $\rho = 10^7 10^{10} \text{ g cm}^{-3}$. Composition of iron group nuclei (A = 45-65)
- Important processes:
 - \succ electron capture:

$$e^-\!+\!(N,Z)\to (N\!+\!1,Z\!-\!1)\!+\!\nu_e$$

>
$$\beta^-$$
 decay:
 $(N,Z) \rightarrow (N-1,Z+1) + e^- + \bar{\nu}_e$

- Dominated by allowed transitions (Fermi and Gamow-Teller)
- Evolution decreases number of electrons (Y_e) and Chandrasekar mass ($M_{\rm Ch} \approx 1.4(2Y_e)^2 \, {\rm M}_{\odot}$)

Gamow-Teller strength

GT₊ strength measured in charge-exchange

Radioactive-beams facility could provide:

- Improved energy resolution.
- Experimental data for unstable nuclei (no experimental information for odd-odd nuclei)
- New experimental techniques based on $(d, {}^{2}\mathrm{He})$ reaction

GT_+ strength measured in $(d, ^2He)$

High resolution Gamow-Teller distributions on 51 V, 58 Ni (64 Ni,...) measured at KVI (Groningen) by EuroSupernova Collaboration.

Collapse phase

Important processes:

- electron capture on protons: $e^- + p \rightleftarrows n + \nu_e$
- Neutrino transport (Exact solution Boltzman equation): $\nu + A \rightleftharpoons \nu + A$ (trapping) $\nu + e^- \rightleftharpoons \nu + e^-$ (thermalization)

cross sections $\sim E_{\nu}^2$

What is the role of electron capture on nuclei

 $e^- + (N, Z) \to (N + 1, Z - 1) + \nu_e$

Is inelastic neutrino-nucleus scattering comparable to neutrino-electron scattering?

 $\nu + A \rightleftarrows \nu + A^*$

Electron capture: nuclei vs protons

Consequences

Neutrino interactions in the collapse

- Elastic scattering: $\nu + A \rightleftharpoons \nu + A$ (trapping)
- Absorption: $\nu_e + (N, Z) \rightleftharpoons e^- + (N-1, Z+1)$
- ν -e scattering: $\nu + e^- \rightleftharpoons \nu + e^-$
- Inelastic ν -nuclei scattering: $\nu + A \rightleftharpoons \nu + A^*$

Explosive nucleosynthesis

Neutrino interactions determine Y_e value

M. Liebendörfer et al

r-process

Astrophysical scenarios

- Neutrino-wind from (cooling) NS $\nu_e + n \rightarrow e^- + p$ $\bar{\nu}_e + p \rightarrow e^+ + n$
- α-process (formation seed nuclei)

$$\begin{array}{l} \alpha + \alpha + n \rightarrow {}^{9}\mathrm{Be} + \gamma \\ \alpha + {}^{9}\mathrm{Be} \rightarrow {}^{12}\mathrm{C} + n \end{array}$$

Masses for r-process nuclei

Half-lives for r-process nuclei

Neutrinos in the r-process

 u_e charge-current interactions can acceler-

Neutrino rates are not sensitive to shell-effects

Abundances metal-poor stars

r-Process Abundances in Halo Stars

- \circledast Abundances for nuclei $Z \geq 56$ consistent with normalized solar distribution.
- U/Th ratio can be used to estimate age of the galaxy.
 (CS 22892-052, 15.6 ± 4.6 Gyr)

Abundance ration sensitive to fission: spontaneous, β -delayed, neutron-induced, neutrino-induced

Neutrino nucleosynthesis

Neutrinos interact with abundant nuclear species

- Neutral current (ν, ν') : Nucleus excited to particle unbound states that decay by particle emission.
- Charged current (ν_e, e^-) and $(\bar{\nu}_e, e^+)$.

Product	Parent	Reaction
⁷ Li	⁴He	$(u, \nu' n)^{3} \mathbf{He}(\alpha, \gamma)^{7} \mathbf{Be}(n, p)$
		$(u, u' p)^{3} H(lpha, \gamma)$
¹¹ B	¹² C	(u, u'n),(u, u'p)
¹⁵ N	¹⁶ 0	(u, u'n),(u, u'p)
¹⁹ F	²⁰ Ne	(u, u'n),(u, u'p)
¹³⁸ La	¹³⁸ Ba	(ν, e^-)
	¹³⁹ La	(u, u'n)
¹⁸⁰ Ta	¹⁸⁰ Hf	(ν, e^-)
	¹⁸¹ Ta	$(\nu, \nu' n)$

XXXVIII Rencontres de Moriond: Radiactive Beams for Nuclear Physics and Neutrino Physics

Nucleosynthesis with and without neutrinos

Neutrinos from SN1987A

Type II supernova in LMC (\sim 55 kpc)

Confirmed core-collapse supernovae emit huge amounts of neutrinos (\sim 10 58)

Supernova rate: One each 30 years.

Supernova neutrino detection

Core-collapse physics.

Collapse and explosion dynamics.

Proto-neutron star cooling (EoS).

- Black hole formation.
- Neutrino physics.
 - mass hierarchy.
 - mixing angle $heta_{13}$.
- SuperNova Early Warning System.
- Earth Core Tomography.

Supernova neutrino detection at ICARUS

Summary

- Radioactive beams offer the possibility of study the properties of exotic nuclei relevant for supernova evolution and nucleosynthesis
- Low energy neutrino beams are necessary to measure neutrino cross sections relevant for supernova dynamics, nucleosynthesis and neutrino detection.