

A BASELINE BETA-BEAM

Mats Lindroos AB Department, CERN

on behalf of the Beta-beam Study Group

http://cern.ch/beta-beam/

Outline

- Beta-beam baseline design
 - A baseline scenario, ion choice, main parameters
 - Ion production
 - Decay ring design issues
- Ongoing work and recent results
 - Asymmetric bunch merging for stacking in the decay ring
- Challenges for the Beta-beam R&D
 - The EURISOL DS
- Trend curves as a tool in accelerator design
 - Target values for EURISOL DS beta-beam facility
- Conclusions

- Beta-beam proposal by Piero Zucchelli
 - A novel concept for a neutrino factory: the beta-beam, Phys. Let. B, 532 (2002) 166-172.
- AIM: production of a pure beam of electron neutrinos (or antineutrinos) through the beta decay of radioactive ions circulating in a highenergy (γ ~100) storage ring.
- Baseline scenario for the first study
 - Make maximum use of the existing infrastructure.

Beta-beam at CERN

- The first "Beta-beam" was aiming for:
 - A beta-beam facility that will run for a "normalized" year of 10⁷ seconds
 - An annual rate of 2.9 10^{18} anti-neutrinos (^He) and 1.1 10^{18} neutrinos (^18Ne) at γ =100

with an Ion production in the target to the ECR source:

- ⁶He= 2 10¹³ atoms per second
- ¹⁸Ne= 8 10¹¹ atoms per second
- The often quoted beta-beam facility flux is for antineutrinos 29 10¹⁸ and for neutrinos 11 10¹⁸ in ten years running

- Work within EURISOL task 2 to investigate production rate with "medical cyclotron"
 - Louvain-La-Neuve, M. Loislet

60 GHz « ECR Duoplasmatron » for gaseous RIB

Charge state distribution!

From dc to very short bunches, v1

Intensities, ⁶He, v1

Machine	Total Intensity out (10 ¹²)	Comment
Source	20	DC pulse, Ions extracted for 1 second
ECR	1.16934	Ions accumulated for 60 ms, 99% of all 6He ions in highest charge state, 50 microseconds pulse length
RCS inj	0.582144	Multi-turn injection with 50% efficiency
RCS	0.570254	Acceleration in 1/32 seconds to top magnetic rigidity of 8 Tm
PS inj	6.82254	Accumulation of 16 bunches during 1 second
PS	5.75908	Acceleration in 0.8 seconds to top magnetic rigidity of 86.7 Tm and merging to 8 bunches.
SPS	5.43662	Acceleration to gamma=100 in 2.54 seconds and ejection to decay ring of all 8 bunches (total cycle time 6 seconds)
Decay ring	58.1137	Total intensity in 8 bunches of 50/8 ns length each at gamma=100 will result in a duty cycle of 0.0022. Maximum number of merges = 15.

Intensities, ¹⁸Ne, v1

Machine	Total Intensity out (10 ¹⁰)	Comment
Source	80	DC pulse, Ions extracted for 1 second
ECR	1.42222	Ions accumulated for 60 ms, 30% of all 18Ne ions in one dominant charge state, 50 microseconds pulse length
RCS inj	0.709635	Multi-turn injection with 50% efficiency
RCS	0.703569	Acceleration in 1/32 seconds to top magnetic rigidity of 8 Tm
PS inj	10.093	Accumulation of 16 bunches during 1 second.
PS	9.57532	Acceleration in 0.8 seconds to top magnetic rigidity of 86.7 Tm and merging to 8 bunches.
SPS	9.45197	Acceleration to gamma=100 in 1.42 seconds and ejection to decay ring of all 8 bunches (total cycle time 3.6 seconds)
Decay ring	277.284	8 bunches of 50/8 ns length each will at gamma=100 result in a duty cycle of 0.0022. Maximum number of merges = 40.

Ring optics

Beam envelopes

In the straight sections, we use FODO cells. The apertures are ±2 cm in the both plans

The arc is a 2π insertion composed of regular cells and an insertion for the injection.

There are 489 m of 6 T bends with a 5 cm half-aperture.

At the injection point, dispersion is as high as possible (8.25 m) while the horizontal beta function is as low as possible (21.2 m).

The injection septum is 18 m long with a 1 T field.

- Moves a fresh dense bunch into the core of the much larger stack and pushes less dense phase space areas to larger amplitudes until these are cut by the momentum collimation system.
- Central density is increased with minimal emittance dilution.
- Requirements:
 - Dual harmonic rf system. The decay ring will be equipped with 40 and 80 MHz systems (to give required bunch length of ~10 ns for physics).
 - Incoming bunch needs to be positioned in adjacent rf "bucket" to the stack (i.e., ~10 ns separation!).
 - For 6He at γ =100 in the version 1 beta-beam design up to 15 merges can be done.
 - For 18Ne (version 2) up to 40 merges can be done thanks to a better mass-to-charge ratio

- Establish the limits of the first study based on existing CERN accelerators (PS and SPS)
- Freeze target values for annual rate at the EURISOL beta-beam facility
 - Close cooperation with nowg
- Freeze a baseline for the EURISOL betabeam facility
- Produce a Conceptual Design Report (CDR) for a credible beta-beam facility
- Produce a first cost estimate for the facility

- The self-imposed requirement to reuse a maximum of existing infrastructure
 - Cycling time, aperture limitations etc.
- The small duty factor
- The activation from decay losses
- The high intensity ion bunches in the accelerator chain and decay ring

Baseline, version 1

- PS and SPS with small modifications
- Only one charge state from ECR
- 8 bunches in the decay ring
 - Duty factor 2.1 10⁻³
- Merging ratio 15 for both ion types
- For 10 years running (5+5):
 - Anti neutrinos: 8.82 1018
 - Neutrinos: 9.49 1016

- A small duty factor does not only require short bunches in the decay ring but also in the accelerator chain
 - Space charge limitations

Baseline, version 2

- ECR source operates at 15 Hz
- PS receives 20 bunches
- No merging in PS and SPS
 - Tune shift respected
- Merging ratio for ¹⁸Ne=40
- 2.5 times higher duty factor
- With version 1 input for all other parameters, for 10 years running (5+5):
 - Anti-neutrinos: 1.07 1019
 - Neutrinos: 2.65 1017

Using existing PS and SPS, version 2 Space charge limitations at the "right flux"

[µm]	⁶ He	¹⁸ Ne
RCS inj	16.4, 8.8	16.4, 8.8
PS inj	6.6, 3.5	4.0, 2.1
SPS inj	0.8, 0.4	0.5, 0.3

 Transverse emittance normalized to PS acceptance at injection for an annual rate of 10¹⁸ (anti-) neutrinos

	⁶ He	¹⁸ Ne
RCS inj	-0.019	-0.078
PS inj	-0.11	-0.20
SPS inj	-0.090	-0.15

- Space charge tune shift
 - Note that for LHC the corresponding values are -0.078 and -0.34

Trend curves

- A tool to identify the right parameters for a design study
- Does not in themselves guarantee that a solution can be found!
- Requires a tool to express the annual rate as a function of all relevant machine parameters

psacceleration := (ClearAll[n];

psTpern[t_] := psinjTpern +

(spsinjTpern - psinjTpern) t/psaccelerationtime;

gamma[t_] := 1 + psTpern[t] / Epern;

decayrate[t_] := Log[2] n[t] / (gamma[t] thalf);

```
eqns = {D[n[t], t] == -decayrate[t], n[0]==nout3};
```

```
n[t_] = n[t] /. DSolve[eqns, n[t], t] //First;
```

nout4 = n[psaccelerationtime]

Gamma and duty cycle

The slow cycling time. What can we do?

Accumulation at 400 MeV/u

How to change the flux, ⁶He EURISOLDS/task12/3-2005

Flux as a function of duty cycle

How to change the flux, ¹⁸Ne EURISOLDS/task12/3-2005

• 19Ne:

- With three linacs and accumulation
 - New PS
 - Accumulation ring
 - Three linacs
 - SPS tune shift?
 - IBS in SPS and Decay ring?

Conclusions

- Beta-Beam Task well integrated in the EURISOL DS
- EURISOL study will result in a first conceptual design report for a beta-beam facility at CERN.
 - In close collaboration with the nowg establish target values for the EURISOL DS beta-beam study
 - We need a "STUDY 1 = EURISOL DS beta-beam" for the betabeam to be considered a credible alternative to super beams and neutrino factories
 - We need a "green-field" study to establish true physics potential of the beta-beam concept (and cost).
- Recent new ideas promise a fascinating continuation into further developments beyond the ongoing EURISOL DS
 - EC beta-beam, High gamma beta-beam, etc.