

A BASELINE BETA-BEAM

Mats Lindroos AB Department, CERN

on behalf of the Beta-beam Study Group

http://cern.ch/beta-beam/

Outline

- Beta-beam baseline design
 - A baseline scenario, ion choice, main parameters
 - Ion production
 - Decay ring design issues
 - Asymmetric bunch merging for stacking in the decay ring
- The EURISOL DS
- Mathematica as a tool in accelerator physics
 - Trend curves to define interesting parameter space for design effort
- Conclusions

Beta-beam "first study 2002"

Main parameters

- Factors influencing ion choice
 - Need to produce reasonable amounts of ions.
 - Noble gases preferred simple diffusion out of target, gaseous at room temperature.
 - Not too short half-life to get reasonable intensities.
 - Not too long half-life as otherwise no decay at high energy.
 - Avoid potentially dangerous and long-lived decay products.
- Best compromise
 - Helium-6 to produce antineutrinos: ${}_{2}^{6}He \rightarrow {}_{3}^{6}Li \ e^{-}\overline{v}$

Average $E_{cms} = 1.937 \text{ MeV}$

– Neon-18 to produce neutrinos:

 $^{18}_{10}Ne \rightarrow ^{18}_{9}F \ e^+\nu$ Average $E_{cms} = 1.86 \text{ MeV}$

- The first study "Beta-beam" was aiming for:
 - A beta-beam facility that will run for a "normalized" year of 10⁷ seconds
 - An annual rate of 2.9 10^{18} anti-neutrinos (^He) and 1.1 10^{18} neutrinos (^18Ne) at γ =100
- with an Ion production in the target to the ECR source:
 - ⁶He= 2 10¹³ atoms per second
 - ¹⁸Ne= 8 10¹¹ atoms per second
- The often quoted beta-beam facility flux is for antineutrinos 29 10¹⁸ and for neutrinos 11 10¹⁸ in ten years running

⁶He production from ${}^{9}Be(n,\alpha)$

- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- 6 He production rate is $\sim 2x10^{13}$ ions/s (dc) for ~ 200 kW on target.

NUFACT05

The Spallation Target System

The inner geometry is characterized by three conical cavities having different angles and total length equal to the active height of the TRIGA core. The cone tip (lowest cone) is exposed to the highest power density for two reasons:

- the relevant proton current at the centre of the Gaussian distribution,
- the forward scattering of protons as a consequence of the conical angle steepness.

¹⁸Ne production

- Spallation of close-by target nuclides
 - ${}^{24}Mg^{12} (p, p_3 n_4) {}^{18}Ne^{10}$.
 - Converter technology cannot be used; the beam hits directly the magnesium oxide target.
 - Production rate for ¹⁸Ne is ~ 1x10¹² ions/s (dc) for ~200 kW on target.
 - ¹⁹Ne can be produced with one order of magnitude
 higher intensity but the half-life is 17 seconds!

- Work within EURISOL task 2 to investigate production rate with "medical cyclotron"
 - Louvain-La-Neuve, M. Loislet

60 GHz « ECR Duoplasmatron » for gaseous RIB

NUFACT05

10

Charge state distribution!

From dc to very short bunches Version 1

NUFACT05

Intensities, 6He, v1

Machine	Total Intensity out (10 ¹²)	Comment
Source	20	DC pulse, Ions extracted for 1 second
ECR	1.16934	Ions accumulated for 60 ms, 99% of all 6He ions in highest charge state, 50 microseconds pulse length
RCS inj	0.582144	Multi-turn injection with 50% efficiency
RCS	0.570254	Acceleration in 1/32 seconds to top magnetic rigidity of 8 Tm
PS inj	6.82254	Accumulation of 16 bunches during 1 second
PS	5.75908	Acceleration in 0.8 seconds to top magnetic rigidity of 86.7 Tm and merging to 8 bunches.
SPS	5.43662	Acceleration to gamma=100 in 2.54 seconds and ejection to decay ring of all 8 bunches (total cycle time 6 seconds)
Decay ring	58.1137	Total intensity in 8 bunches of 50/8 ns length each at gamma=100 will result in a duty cycle of 0.0022. Maximum number of merges = 15.

Intensities, 18Ne, v1

Machine	Total Intensity out (10 ¹⁰)	Comment
Source	80	DC pulse, Ions extracted for 1 second
ECR	1.42222	Ions accumulated for 60 ms, 30% of all 18Ne ions in one dominant charge state, 50 microseconds pulse length
RCS inj	0.709635	Multi-turn injection with 50% efficiency
RCS	0.703569	Acceleration in 1/32 seconds to top magnetic rigidity of 8 Tm
PS inj	10.093	Accumulation of 16 bunches during 1 second.
PS	9.57532	Acceleration in 0.8 seconds to top magnetic rigidity of 86.7 Tm and merging to 8 bunches.
SPS	9.45197	Acceleration to gamma=100 in 1.42 seconds and ejection to decay ring of all 8 bunches (total cycle time 3.6 seconds)
Decay ring	277.284	8 bunches of 50/8 ns length each will at gamma=100 result in a duty cycle of 0.0022. Maximum number of merges = 40.

Beta-beam R&D

- Part of the EURISOL Design Study
 - Design Study in the 6th Framework Programme of the EU
- The EURISOL Project
 - Design of an ISOL type (nuclear physics) facility.
 - Performance three orders of magnitude above existing facilities.
 - A first feasibility / conceptual design study was done within FP5.
 - Strong synergies with the low-energy part of the beta-beam:
 - Ion production (proton driver, high power targets).
 - Beam preparation (cleaning, ionization, bunching).
 - First stage acceleration (post accelerator ~100 MeV/u).
 - Radiation protection and safety issues.

EURISOL

NUFACT05

- Establish the limits of the first study based on existing CERN accelerators (PS and SPS)
- Freeze target values for annual rate at the EURISOL beta-beam facility
 - Close cooperation with nowg
- Freeze a baseline for the EURISOL betabeam facility
- Produce a Conceptual Design Report (CDR) for the EURISOL beta-beam facility
- Produce a first cost estimate for the facility

Ring optics

In the straight sections, we use FODO cells. The apertures are ±2 cm in the both plans

The arc is a 2π insertion composed of regular cells and an insertion for the injection.

There are 489 m of 6 T bends with a 5 cm half-aperture.

At the injection point, dispersion is as high as possible (8.25 m) while the horizontal beta function is as low as possible (21.2 m).

The injection septum is 18 m long with a 1 T field.

Injection Horizontal envelopes at injection

dapnia

saclay

- Injection is located in a dispersive area
- The stored beam is pushed near the septum blade with 4 "kickers". At each injection, a part of the beam is lost in the septum
- Fresh beam is injected off momentum on its chromatic orbit.
 "Kickers" are switched off before injected beam comes back
- During the first turn, the injected beam stays on its chromatic orbit and passes near the septum blade
- Injection energy depends on the distance between the deviated stored beam and the fresh beam axis

Decay products extraction

Two free straight sections after the first arc dipole enable the extraction of decay products coming from long straight sections.

The decay product envelopes are plotted for disintegrations at the begin, the middle and the end of the straight section.

Fluorine extraction needs an additional septum.

The permanent septum for Fluorine extraction is 22.5 m long and its field is 0.6 T.

Lithium extraction can be made without a septum.

Decay products deposit in the arc

The dispersion after a L long bend with a radius equal to ρ is :

$$D = \rho \left(1 - \cos \left(\frac{L}{\rho} \right) \right)$$

By this way, we can evaluate the maximum length of a bend before the decay products are lost there.

If we choose a 5 cm half aperture, half of the beam is lost for a 7 m long bend. With a 5 m long bend, there is very low deposits in the magnetic elements.

Only the Lithium deposit is problematic because the Neon intensity is far below the Helium one.

daphia

saclav

Parameters of the magnetic elements in the ring

The half-aperture chosen for the magnetic elements is 5 cm

The field calculations are for Helium (except for extraction septum)

S	а	C	a	V
$\mathbf{\mathbf{\nabla}}$	9		9	y

max QP in the injection section								
	L (m)	K (m-2)	B (T)					
IQP4	3	-0,017	-0,80					
QP fa	mily in the	arc FODO ce	ells					
	L (m) K (m-2) B (T)							
QP1	3	-0,018	-0,84					
QP2	3	0,027	1,26					
QP family in the straight sections								
	L (m) K (m-2) B							
DQP1	1	-0,011	-0,53					
DQP2	1	0,012	0,54					

	⁶ He ²⁺	¹⁸ Ne ¹⁰⁺
γ	100	100
Βρ (T.m)	931	559

Bends and septa in the ring						
Length (m) radius (m) field (T)						
B1	4,89	156	5,98			
inj sept 18		931	1			
ext sept	22.5	1035	0.6			

Injection kickers						
Length Deviation BL (m) (mrad) (T.m)						
IKI1	2	0,563	0,524			
IKI2	1	-0,16	-0,149			

Challenges for the study

- Production
- ECR efficiency for single charge states
- The self-imposed requirement to re-use a maximum of existing infrastructure
 - Cycling time, aperture limitations etc.
- The small duty factor
- The activation from decay losses
- The high intensity ion bunches in the accelerator chain and decay ring

Decay losses, ECR

ECR Accumulation

```
ecraccumulation := (ClearAll[n];
gamma[t_] := 1 + ecrejTpern / Epern;
decayrate[t_] := Log[2] n[t] / (gamma[t] thalf);
eqns = {D[n[t], t] == sourcerate - decayrate[t], n[0]==0};
n[t_] = ecrefficiency n[t] /. DSolve[eqns, n[t], t] //First;
nout0 = n[ecraccumulationtime]
)
set6He; ecraccumulation
Plot[n[t], {t, 0,ecraccumulationtime},
```

```
PlotLabel->name, AxesLabel->{"[s]",None}];
```

```
1.16971 10<sup>12</sup>
```


Accumulation

Decay Ring Accumulation

```
decayringaccumulation := (ClearAll[n];
     gamma[t_] := 1 + topTpern / Epern;
     decayrate[t_] := Log[2] n[t] / (gamma[t] thalf);
     eqns = \{D[n[t], t] == -decayrate[t], n[0]==nout6\};
     nsinglebatch[t_] = n[t] /. DSolve[eqns, n[t], t] //First;
     n[t_] = Sum[UnitStep[t-t0] UnitStep[t0+mergesratio*spsrepetitiontime-t] *
       nsinglebatch[t-t0], {t0, 0,t,spsrepetitiontime}];
     nout7 = n[(mergesratio-1)spsrepetitiontime]
   )
   fullchain := (spsout; decayringaccumulation)
   set6He; fullchain
   Plot[n[t], {t, 0,(mergesratio+1)spsrepetitiontime+10^-6},
     PlotPoints->200, PlotLabel->name, AxesLabel->{"[s]",None}];
   7.11588 10<sup>13</sup>
                     бНе
7′10<sup>13</sup>
6′10<sup>13</sup>
5'10<sup>13</sup>
4'10<sup>13</sup>
```

3'10¹³ 2'10¹³ 1'10¹³

20

40

60

80

Number of ions

set6He; fullchain;

```
StandardForm[StyleForm[NumberForm[TableForm[
```

```
N[{sourcerate, nout0, nout1, nout2, nout3, nout4, nout6, nout7}],
```

```
TableHeadings->{
```

```
{"Source rate", "ECR", "RCS inj", "RCS", "PS inj", "PS", "SPS", "Decay Ring"},
None
```

```
}], 3], FontWeight->"Plain", FontSize->16]]
```

5 annualrate

Source rate	2.′10 ¹³
ECR	1.17′10 ¹²
RCS inj	5.83′10 ¹¹
RCS	5.71′10 ¹¹
PS inj	8.22′10 ¹²
PS	7.02′10 ¹²
SPS	6.63′10 ¹²
Decay Ring	7.12′10 ¹³

19 1.06841 10

Gamma dependency

set6He; spscycletime plb = Lister: Dopper version of the set of the set

б.

Duty factor dependency

set6He; ListPlot[Table[Evaluate[{mergesratio=x, fullchain}], {x, 15,150,5}], PlotJoined->True, PlotLabel->name];

The slow cycling time. What can we do?

NUFACT05

How to change the flux, ⁶He

Flux as a function of duty cycle

NUFACT05

How to change the flux, ¹⁸Ne

Flux as a function of duty cycle

through the linac!

Baseline, version 2

- ECR source operates at 15 Hz
- PS receives 20 bunches
- No merging in PS and SPS
 - Tune shift respected
- With version 1 input for all other parameters for 10 years running (5+5):
 - Anti-neutrinos: 1.07 1019
 - Neutrinos: 2.65 1017

• 19Ne:

 $^{19}_{10}Ne \rightarrow ^{19}_{9}F e^+ v$ Q $_{\beta} = 2.2 \text{ MeV}$ t_{1/2} = 17.22 s

- With three linacs and accumulation
 - New PS
 - Accumulation ring
 - Three linacs
 - SPS tune shift?

EC: A monochromatic neutrino beam

Decay	T _{1/2}	BR_{v}	EC/v	I_{EC}^{β}	B(GT)	E_{GR}	$\Gamma_{\rm GR}$	Q _{EC}	E_{v}	ΔE_{ν}
148 Dy \rightarrow 148 Tb *	3.1 m	1	0.96	0.96	0.46	620		2682	2062	
150 Dy \rightarrow 150 Tb [*]	7.2 m	0.64	1	1	0.32	397		1794	1397	
$^{152}\text{Tm2} \rightarrow ^{152}\text{E}_{\text{T}}^{*}$	8.0 s	1	0.45	0.50	0.48	4300	520	8700	4400	520
¹⁵⁰ Ho2 ⁻ → ¹⁵⁰ Dy [*]	72 s	1	0.77	0.56	0.25	4400	400	7400	3000	400

- Partly stripped ions: The loss due to stripping smaller than 5% per minute in the decay ring
- Possible to produce 1 10^{11 150}Dy ions/second (1+) with 50 microAmps proton beam with existing technology (TRIUMF)
- An annual rate of 10¹⁸ decays along one straight section seems as a realistic target value for a design study
- Beyond EURISOL DS: Who will do the design?
- Is ¹⁵⁰Dy the best isotope?

- Beta-Beam Task well integrated in the EURISOL DS
- EURISOL study will result in a first conceptual design report for a beta-beam facility at CERN.
 - We need a "STUDY 1" for the beta-beam to be considered a credible alternative to super beams and neutrino factories
- Recent new ideas promise a fascinating continuation into further developments beyond the ongoing EURISOL DS
 - Low energy beta-beam, EC beta-beam, High gamma betabeam, etc.