



# Neutrino Factories and Beta Beams: Concepts, Challenges, and R&D

Michael S. Zisman Center for Beam Physics Lawrence Berkeley National Laboratory

> EPACO6-Edinburgh June 30, 2006





- Discovery of neutrino oscillations led to strong interest in providing intense beams of accelerator-produced neutrinos
  - such a facility may be able to observe CP violation in the lepton sector  ${}_{\scriptscriptstyle 0}$  the reason we're all here
- Two ideas have been proposed for producing the required neutrino beams
  - a Neutrino Factory based on the decays of a stored muon beam
  - a Beta Beam facility based on decays of a stored beam of betaunstable ions
- Both approaches are challenging!





#### • Neutrino Factory beam properties

$$\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Longrightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$$
$$\mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \Longrightarrow 50\% V_{e} + 50\% \overline{V}_{\mu}$$

Produces high energy neutrinos

#### • Beta beam properties

- ${}^{6}\text{He} \rightarrow {}^{6}\text{Li} + e^{-} + \bar{\nu}_{e}$
- <sup>18</sup>Ne  $\rightarrow$  <sup>18</sup>F + e<sup>+</sup> + v<sub>e</sub>

Produces low energy neutrinos

#### Decay kinematics well known

- minimal hadronic uncertainties in the spectrum and flux  $% \left( {{{\left[ {{{\rm{m}}} \right]}_{{\rm{m}}}}} \right)$ 

#### $\cdot$ Electron neutrinos are most favorable to do the science

 $-\nu_e \rightarrow \nu_\mu$  oscillations give easily detectable "wrong-sign"  $\mu_0$  do not get  $\nu_e$  from "conventional" neutrino beam line ( $\pi \rightarrow \mu + \nu_\mu$ )





#### $\boldsymbol{\cdot}$ Neutrino Factory comprises these sections







Beta Beam



- Baseline Beta Beam facility comprises these sections
  - Proton Driver
    - SPL (≈4 GeV)
  - ISOL Target
    - spallation neutrons or direct protons
  - Ion Source
    - pulsed ECR
- Baseline concept assumes CERN PS, SPS

Use of Tevatron also being considered

Acceleration

 linac, RCS, PS, SPS

 Decay Ring

 7000 m; 2500 m straight







- Muons created as tertiary beam ( $p \rightarrow \pi \rightarrow \mu$ )
  - low production rate
    - $_{\circ}\,\text{need}$  target that can tolerate multi-MW beam
  - large energy spread and transverse phase space
    - $\circ$  need emittance cooling
    - $_{\rm o}\,high-acceptance$  acceleration system and decay ring
- Muons have short lifetime (2.2  $\mu$ s at rest)
  - puts premium on rapid beam manipulations
    - $_{\circ}$  high-gradient RF cavities (in magnetic field for cooling)
    - ${\scriptstyle \circ}$  presently untested ionization cooling technique
    - ${\scriptstyle \circ}$  fast acceleration system





- Ionization cooling analogous to familiar SR damping process in electron storage rings
  - energy loss (SR or dE/dx) reduces  $p_{x'}$ ,  $p_{y'}$ ,  $p_z$
  - energy gain (RF cavities) restores only  $p_z$
  - repeating this reduces  $p_{x,y}/p_z$







- $\cdot$  There is also a heating term
  - for SR it is quantum excitation
  - for ionization cooling it is multiple scattering
- Balance between heating and cooling gives equilibrium emittance  $\frac{d\varepsilon_N}{d\varepsilon_N} = -\frac{1}{2} \left| \frac{dE_{\mu}}{d\varepsilon_N} \right|_{\varepsilon_N} + \frac{\beta_{\perp} (0.014 \, \text{GeV})^2}{2}$

$$\frac{d\varepsilon_N}{ds} = -\frac{1}{\beta^2} \left| \frac{dE\mu}{ds} \right| \frac{\varepsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 \,\text{GeV})}{2\beta^3 E_\mu m_\mu X_0}$$
Cooling Heating
$$\varepsilon_{x,N,equil.} = \frac{\beta_\perp (0.014 \,\text{GeV})^2}{2\beta m_\mu X_0} \left| \frac{dE\mu}{ds} \right|$$

- prefer low  $\beta_{\perp}$  (strong focusing), large  $X_0$  and dE/ds (H<sub>2</sub> is best)





- Desired proton intensity for Neutrino Factory is 4 MW
   e.g., 2.5 x 10<sup>15</sup> p/s at 10 GeV or 5 x 10<sup>13</sup> p/pulse at 50 Hz
- Desired bunch length is 1-3 ns to minimize intensity loss
   not easily done at high intensity and moderate energy





# NF Target



- Favored target concept based on Hg jet in 20-T solenoid
  - jet velocity of 20 m/s establishes "new" target each beam pulse





# NF RF



- Cooling channel requires high-gradient RF in a strong magnetic field
  - 805 MHz experiments indicate substantial degradation of gradient in such conditions







- Production of the required ion species at the required intensity
  - requires production, transport to ion source, ionization, bunching
    - ${}_{\circ}$  target's ability to accommodate primary beam is sometimes limited to a few hundred kW
  - looks okay for <sup>6</sup>He but <sup>18</sup>Ne is presently estimated at about 4% of desired intensity level
    - $_{\rm 0}$  higher Z atoms are produced in multiple charge states, with the peak at 25–30% of the total intensity

|                  | Nominal production rate [ions/s] | Required production rate [ions/s] | Missing factor |
|------------------|----------------------------------|-----------------------------------|----------------|
| 6 He             | $2	imes 10^{13}$                 | $2	imes 10^{13}$                  | 1              |
| $18 \mathrm{Ne}$ | $8	imes 10^{11}$                 | $1.9	imes 10^{13}$                | 24             |





- RF manipulations in transfers
  - ion source  $\rightarrow$  RCS  $\rightarrow$  PS  $\rightarrow$  SPS  $\rightarrow$  decay ring
  - process is not 100% efficient
    - o beam losses represent vacuum challenge in PS
      - optimized lattice with collimation system could improve vacuum x100













#### $\cdot$ RF stacking in decay ring

- need to stack beam in decay ring to get acceptable decay rate
  - after 15-20 merges, about 50% of the beam is pushed outside the acceptance
- need substantial momentum collimation scheme
  - $_{\rm o}\,\text{beam}$  losses represent 150 kW average power load on collimators
    - peak load during bunch compression process (few 100 ms) will be at MW level

#### Decay losses also an issue:

SC dipoles require 16 cm aperture and suffer ≈10 W/m heat load





# NF R&D



- R&D program has three main thrusts
  - simulation and theory (ongoing effort as part of  $\ensuremath{\text{ISS}}\xspace$
  - development of high-power target technology
  - development of cooling channel and rapid acceleration technology
- Recent simulation effort has focused on simplifying NF design to reduce costs
  - replaced induction linacs with RF bunching and phase rotation scheme
     this permitted simultaneous use of muons of both signs
  - improved acceleration system (RLAs  $\rightarrow$  non-scaling FFAGs)  $_{\circ}$  larger acceptance 15 $\pi$  mm-rad  $\rightarrow$  30 $\pi$  mm-rad
  - increased downstream acceptance permitted simplified cooling channel  $_{\circ}$  fewer solenoids, fewer RF cavities, simpler absorbers (LH<sub>2</sub>  $\rightarrow$  LiH)

#### Together, improvements doubled intensity (2 signs) and reduced cost of facility by 35%





• Disruption at moderate intensity (4 Tp) demonstrated in BNL E951

— no solenoidal field

 What happens at higher intensity and with strong solenoid? (MERIT)





# NF RF R&D (1)



#### $\cdot$ Testing pressurized version of button cavity

— use high-pressure  $H_2$  gas to limit breakdown





#### Breakdown limitation does not degrade in magnetic field







- Initial tests of 201 MHz prototype cavity are under way
  - fabricated by collaboration of LBNL, Jlab, and U-Mississippi
  - processed as if a superconducting cavity (electropolished)
- Cavity reached design gradient of 16 MV/m rapidly — no signs of conditioning up to 4.2 MW input power





42-cm curved Be window



# NF FFAG R&D



#### NuFact-J group has now built and commissioned world's first 150 MeV proton FFAG ring

- experimental results in good agreement with design predictions
  - fast cycling (100 Hz) demonstrated



#### RF cavity



# BB R&D (1)



- $\cdot$  Beta Beam work to date mostly "paper studies"
  - funded for system design, not hardware development
- New concept for production proposed by C. Rubbia et al.

- based on ionization "cooling" of ions to maintain equilibrium emittance





# BB R&D (2)



 Experimentally demonstrated key bunch merging technique in PS



# S. Hancock, M. Benedikt and J-L.Vallet, *A proof of principle of asymmetric bunch pair merging*, AB-Note-2003-080 MD

#### Ingredients

- h=8 and h=16 systems of PS.
- Phase and voltage variations.



![](_page_20_Picture_10.jpeg)

![](_page_21_Picture_0.jpeg)

# System Tests-MICE (1)

![](_page_21_Picture_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_22_Picture_0.jpeg)

System Tests-MICE (2)

• MICE channel at RAL will be built in steps to ensure complete understanding and control of systematic errors

![](_page_22_Figure_3.jpeg)

![](_page_23_Picture_0.jpeg)

### System Tests-MERIT

![](_page_23_Picture_2.jpeg)

#### • MERIT experiment will test Hg jet in 15-T solenoid

# 24 GeV proton beam from CERN PS o scheduled Spring 2007

![](_page_23_Figure_5.jpeg)

![](_page_23_Figure_6.jpeg)

![](_page_23_Picture_7.jpeg)

15-T solenoid during tests at MIT

Hg delivery and containment system under construction at ORNL

![](_page_24_Picture_0.jpeg)

## Summary

![](_page_24_Picture_2.jpeg)

- Substantial progress being made toward design of accelerator-based neutrino facilities to study CP violation in the lepton sector
- Work extending state-of-the-art in accelerator science
  - high-power targets, new cooling techniques, ion source development, rapid acceleration techniques,...
- Work shown here represents efforts in EU, Japan, U.S.
  - $-\ carried\ out\ in\ coordinated\ fashion\ internationally$ 
    - by choice, not dictated externally

#### Thanks to Mats Lindroos and Andreas Jansson for sharing their expertise on Beta Beams

![](_page_25_Picture_0.jpeg)

# Final Thought

![](_page_25_Picture_2.jpeg)

Paper studies alone are *not enough* 

# We need to build and test things!

![](_page_25_Picture_5.jpeg)