

BETA-BEAM

Base-line design study within EURISOL

Michael Benedikt AB Department, CERN

on behalf of the Beta-beam Study Group

http://cern.ch/beta-beam/

• Beta-beam baseline design

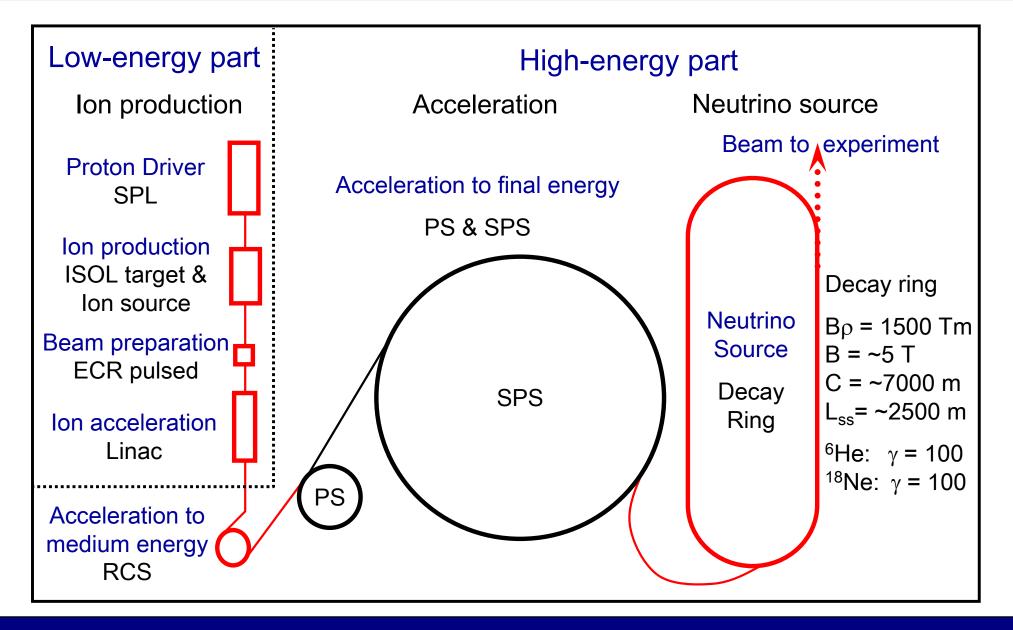
- The baseline scenario
- Main parameters and choices

Ongoing work and recent results

- Asymmetric bunch merging for stacking in the decay ring.
- Goals Status
- Conclusions

- Beta-beam proposal by Piero Zucchelli in 2002:
 - A novel concept for a neutrino factory: the beta-beam, Phys. Let. B, 532 (2002) 166-172.
- AIM: production of a pure beam of electron neutrinos (or antineutrinos) through the beta decay of radioactive ions circulating in a high-energy (γ~100) storage ring.
- First ideas on conceptual design of the accelerator complex presented at NuFact'02 ("The Beta-beam working group").
- Conceptual design study for a Beta-beam complex within the EURISOL DS (6th framework programme of EU) 2005-2008/9.

- Strategy for the conceptual design study:
 - Design should be based on known technology.
 - Avoid large number of technology jumps, requiring major and costly R&D efforts.
 - Re-use wherever possible existing infrastructure (i.e. accelerators) for the "first stage" base line design.


• Major ingredients:

- ISOL technique for production of radioactive ions.
- Use CERN PS and SPS accelerators for acceleration.

Beta-beam baseline design

Main parameters (1)

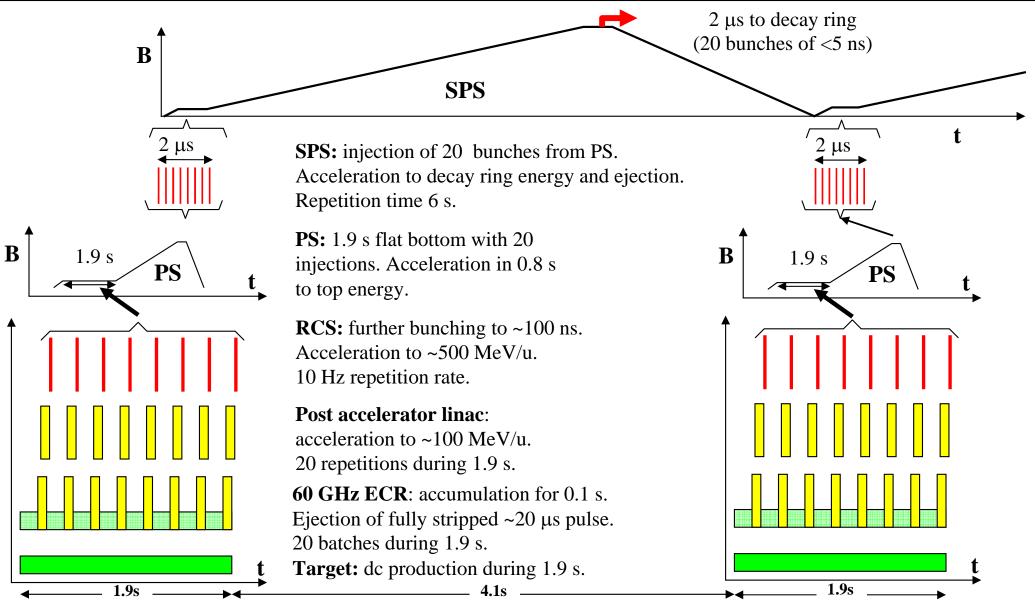
- Ion choice
 - Possibility to produce reasonable amounts of ions
 - Noble gases preferred simple diffusion out of target, gas phase at room temperature
 - Not too short half-life to get reasonable intensities
 - Not too long half-life as otherwise no decay at high energy
 - Avoid potentially dangerous and long-lived decay products
- Best compromise – ⁶Helium²⁺ to produce antineutrinos: ${}^{6}_{2}He \rightarrow {}^{6}_{3}Li \ e^{-}\overline{\nu}$ Average $E_{cms} = 1.937 \text{ MeV}$
 - ¹⁸Neon¹⁰⁺ to produce neutrinos:

 $^{18}_{10}Ne \rightarrow ^{18}_{9}Fe \ e^+ v$ Average $E_{cms} = 1.86 \text{ MeV}$

Target values in the decay ring

⁶Helium²⁺

- Intensity (av.): 1.0x10¹⁴ ions
- Rel. gamma: 100


¹⁸Neon¹⁰⁺ (single target)

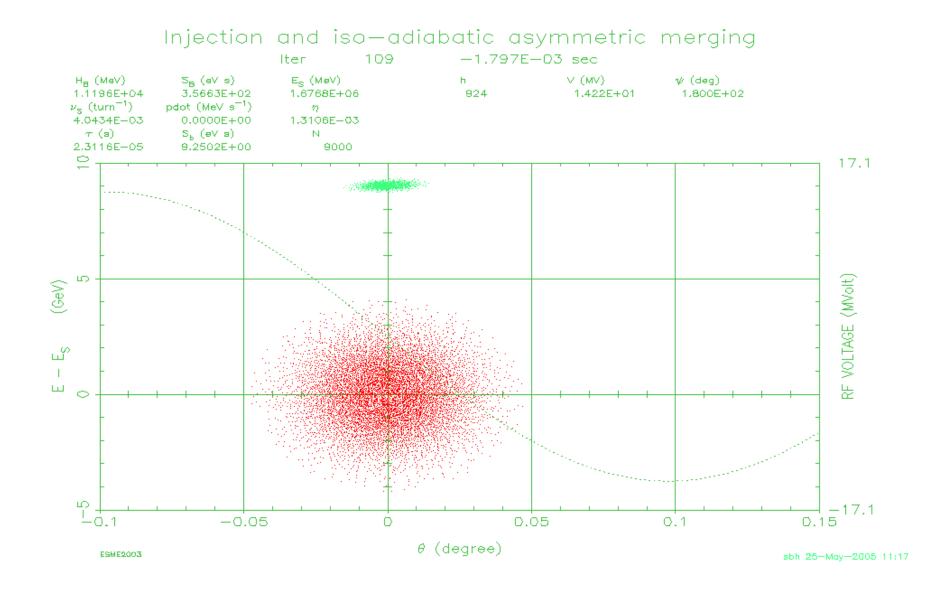
- Intensity (av.): 7.2×10^{13} ions
- Rel. gamma: 100

- The neutrino beam at the experiment has the "time stamp" of the circulating beam in the decay ring.
- The beam has to be concentrated in as few and as short bunches as possible to maximize the peak number of ions/nanosecond (background suppression).
- Aim for a duty factor of $\sim 10^{-3}$ -> this is a major design challenge!

From dc to very short bunches

M. Benedikt

Design Study



- The ions have to be concentrated in very few very short bunches.
 - Suppression of atmospheric background via time structure.
- There is an absolute need for stacking in the decay ring.
 - Not enough flux from source and injection chain.
 - Life time is an order of magnitude larger than injector cycling (~120 s as compared to a few seconds for SPS cycling).
 - We need to stack at least over 10 to 15 injector cycles.
- No one of the established cooling methods can be used
 - Electron cooling is excluded because of the high electron beam energy and in any case far too long cooling times.
 - Stochastic cooling is excluded by the high bunch intensities.
- A new injection/merging technique was developed (asymmetric bunch pair merging in longitudinal phase space).

ISS CERN

- For the base line design, the aims are (cf. Bouchez et al., NuFact'03):
 - An annual rate of 2.9 10¹⁸ anti-neutrinos (⁶He) along one straight section
 - An annual rate of 1.1 10¹⁸ neutrinos (¹⁸Ne) at γ =100

always for a "normalized" year of 10⁷ seconds.

• The present status is (after 8 months of the 4-year design study):

- Antineutrino rate (and ⁶He figures) have reached the design values but no safety margin is yet provided.
- Neutrino rate (and ¹⁸Ne figures) are one order of magnitude below the desired performance.

- **Production and beam preparation (esp. ¹⁸Ne).**
 - Charge state distribution after ECR source.
- The re-use of existing accelerators
 - Cycling time,
 - Aperture limitations etc.
 - Energy ranges
 - Collimation and beam cleaning systems

• General aspects:

- The small duty factor in the decay ring.
- The activation from decay losses.
- The high intensity ion bunches in the accelerator chain and decay ring

- Beta-beam design study is advancing well, encouraging results obtained after only 8 months.
- Main efforts will now focus on 18Ne shortfall.
- Going beyond the base line design at a later stage with additional accumulation rings, and other new machines (green-field) may open the way to important performance enhancements.