

Loss Analysis for Beta Beam Operation in existing CERN Synchrotrons

Proposal for a Replacement of PS with Optimized Loss Distribution

<u>Peter Spiller</u> M. Kirk, J. Stadlmann, C. Omet GSI, group accelerator development Darmstadt

> Beta Beam Task Meeting 17th October 2005

Outline

- Introduction to StrahlSim
- Loss analysis in existing CERN synchrotrons and the proposed decay ring – Distribution and Dynamic Vaccum
- Proposal for a Strong Focusing s.c. PS (G7) with Improved Loss Distribution

Tracking and Dynamic Vacuum: StrahlSim by C. Omet (GSI)

Implementations

- Initial systematic beam losses (e.g. multi turn injection losses, RF capture losses)
- Projectile and target ionization and capture cross sections and the resulting ionization and multiple ionization degree
- Collimation efficiency for each generated charge state
- Energy dependence of the collimation efficiency and of the cross sections
- Effective desorption rate of the collimation system (leakage rate)
- Initial residual gas composition
- Desorption coefficient and assumption for the composition of the desorped gases
- Desorption generated by target ionization
- Coulomb scattering with the residual gas
- Version 2: rewritten to be more efficient at computation
- Import sextupoles and combined function magnets
- Export to WINAGILE, MAD-X and MIRKO, import from WINAGILE and MIRKO

Lattice parameters (1)

GSÝ

	PS	SPS	PS G7
General lattice parameters			
Circumference	628.32 m	6911.5 m	628.32 m
Number of superperiods	10	6	6
Focusing structure	Comb. Func. (FDDF)	Singlet FODO	Doublet (DF)
Number of cells per arc	100 (one arc)	16	6
Number of cells per straight section	-	2	1
Number of cells per superperiod	10	18	7
Length of each cell	4.4 m	64 m	14.96 m
Distance between quadrupole multiplets	-	28.6 m	11.48 m
Total (usable) drift length per superperiod	12.8 m	251.7 m	11.48 m

17.10.2005

Lattice parameters (2)

GSÝ

	PS	SPS	PS G7
Outies responses			
Optics parameters			
Max. β (x / y)	22.52 m / 22.32 m	104.36m/103.57m	22.68 m / 23.06 m
Max D	3.04 m	5.64 m	5.72 m
mod Q	6.xx / 6.xx	26.xx / 26.xx	7.xx / 7.xx
γ _T	6.12	22.2	6.58
ξ _{nat} /Q (x / y)	-1.03 / -1.04	1.73 / -1.09	-1.07 / -1.09
Acceptance (x * y)	60 * 20 π mm mrad	28 * 4.5 π mm mrad	110 * 108 π mm mrad (chamber aperture)

Lattice parameters (3)

G S T

	PS	SPS	PS G7
Dipole Magnets			
Number of dipoles	200	744	108
Max. flux density	1.24 T	2.02 T	4 T
Bending angle	1.8 °	0.48 °	3 1/3 °
Radius of curvature	70 m	740 m	40 m
Effective field length	2200 mm	6260 mm	2327.1 mm
Chamber aperture	Elliptical H 146mm V 68mm	Elliptical H 284mm V 69mm	100 mm round

Synchrotron Parameters

G S T

	PS			PS G7
Synchrotron Parameters	Protons	Beta beams	SPS	
Synchrotron circumference L, m	628.32	628.32	6911.5	628.32
Magnetic rigidity at injection, Tm	7.13	11	86.7	11
Magnetic rigidity at extraction, Tm	86.7	86.7	1500	160
Ramping rate, T/s	1.35	1.35	0.45	4.5
Accumulation time, s		1.9	0	1.9
Collimation possible	No	No	No	Yes

Beam parameters

	PS			SPS
Beam Parameters	Protons	Beta beams	PS G7	(proton and beta beams)
Beam ions species, nuclear charge Z	1	He: 2 Ne: 10	He: 2 Ne: 10	He: 2 Ne: 10
Charge state of the ion beams q	1+	He 2+ Ne 10+	He 2+ Ne 10+	p +1 He 2+ Ne 10+
Injection energy <i>E</i> , GeV/u	1.4	He 0.5 Ne 1.1	He 0.5 Ne 1.1	P 25 He 15 Ne 26
Extraction energy <i>E</i> , GeV/u	25	He 7.8 Ne 13.539	He 15 Ne 26	P 450 He 92 Ne 92
Horizontal emittance <i>e_h</i> , mm mrad	5.2	He 26 Ne 16	He 26 Ne 16	P 0.5 He 3.2 Ne 1.6
Vertical emittance e_v , mm mrad		He 14 Ne 8	He 14 Ne 8	He 2 Ne 1.2
Initial number of particles in the beam	8.4x10 ¹²	He 1.12x10 ¹³ Ne 1.9x10 ¹¹	He 1.12x10 ¹³ Ne 1.9x10 ¹¹	p 8.1x10 ¹² He 9.05x10 ¹² Ne 1.79x10 ¹¹

P.Spiller: Beta Beam Task Meeting - Saclay

UHV System Parameters

UHV System Parameter	PS	SPS	PS G7 (Beta Beams)	SPS (Beta Beams)
Beam tube volume V, m ³	6	50	4.93	50
Pumping speed S, I/s	7600	2280	1400000[1]	2280
Base residual gas pressure <i>P</i> , mbar	10 ⁻⁹	10 ⁻⁹	10 ⁻¹²	10 ⁻⁹
Vacuum composition, %	H ₂ (35%) N ₂ (7%) H ₂ O (50%)	H ₂ (35%) N ₂ (7%) H ₂ O (50%)	H ₂ (35%) N ₂ (7%) H ₂ O (50%)	H ₂ (35%) N ₂ (7%) H ₂ O (50%)
Desorption coefficient for beam particles η_{b} , 1/ion	2.8x10 ⁴	2.2x10 ⁴	2.8x10 ⁴	2.2x10 ⁴
Desorption coefficient for ionized gas molecules η_{b} , 1/mol	10	10	10	10

[1] Scaled from SIS90 with machine circumference, which has an effective pumping rate of 2.6x10⁶ l/s.

GSĬ

Beta Beams in

(2)

D

G.

Ξ

Beam Loss in existing PS

Loss Distribution in PS

P.Spiller: Beta Beam Task Meeting - Saclay

Beam Loss / Pressure in PS

time dependent number of particles in the PS

Beta Beams in

P.Spiller: Beta Beam Task Meeting - Saclay

Beam Loss in existing SPS

GSJ

P.Spiller: Beta Beam Task Meeting - Saclay

Loss Distribution in SPS

Beam Loss / Pressure in SPS

time dependent number of particles in the SPS

Beta Beams in

0.0

0.5

1.0

1.5

t/s

2.0

2.5

P.Spiller: Beta Beam Task Meeting - Saclay

Beta Beams in

Beam Loss in Decay Ring

17.10.2005

FAIR: SIS 300 Magnet R&D

Results of testing the advanced G001coil: 4.38 T @ 2 T/s

Beta Beams in

Cored rutherford cable

Major Improvements :

Laser cutted cooling slots

Reduced filament twist pitch, strand coating (stabrite), stainless steel core

Design report based on GSI001 model and UNK dipole

17.10.2005

P.Spiller: Beta Beam Task Meeting - Saclay

Proposed s.c. PS G7 Lattice

- Based on bend, s.c. cos
 magnets, 4 T, 4.5 T/s, R&D for GSI001
 SIS200 model magnet, talk W. Scandale "LHC upgrade.." (15.9.05)
- Doublet focusing, optimized cell layout for peaked loss distribution
- Long arcs (PS like ring), straight sections for Rf systems
- Dispersion free straight sections

PS / PS-G7 Comparison

The proposed PS G7 fits into the existing PS tunnel

Beam Loss in proposed PS G7

G

 He_{β} beam

 Ne_{β} beam

Loss Distribution in proposed PS G7

loss distribution in the PS V7

P.Spiller: Beta Beam Task Meeting - Saclay

G S X

Beta Beams in

He

Beam Loss and Pressure in PS G7

time dependent number of particles in the PS V7

time dependent number of particles in the PS V7

Beta Beams in

Rf Parameters for PS G7

- Transfer 20 batches from RCS (h=20) to PS (h=21)
- Maximum gap voltage 300 kV
- Rf Cavities, He 7.64-9.96 MHz, Ne 8.93-10 MHz (Cf., Protons 3.5-3.8 MHz at h=8)
- Maximum dB/dt = 4.5 T/s (like SIS100)
- Synchronous phase 22 deg. with 300 kV and 4.5 T/s.
- Acceptance per bucket at injection:

 \rightarrow 6He2+ 2.5 eVs (cf., 1eVs emittance)

→18Ne10+ 17 eVs (cf., 2eVs emittance)

Single batch transfer of 20 bunches to SPS

17.10.2005

Surving Number of Particles

PS (existing)	He	Ne
Injected particles	1.12E+13	1.90E+11
survived particles	3.32E+12	1.22E+11
PS G7	He	Ne
Injected particles	1.12E+13	1.90E+11
survived particles	3.68E+12	1.25E+11
SPS (from existing PS)	He	Ne
Injected particles	3.32E+12	1.22E+11
survived particles	2.98E+12	1.19E+11
SPS (from PS G7)	He	Ne
Injected particles	3.68E+12	1.25E+11
survived particles	3.39E+12	1.23E+11

Summary

- Analysis of the beta beam loss distribution has been performed for the CERN machines PS and SPS and the proposed decay ring
- Dynamic vacuum effects, maximum pressure rise and elastic scattering has been determined.
- The simulation of ramping and energy dependent lifetime of the ions in the beta beam facility has been implemented and decay losses has been calculated.
- A new PS (G7) has been proposed to replace the existing PS – offering a peaked loss distribution for both beta beams, with reduced losses in the magnets and the possibility for an efficient collimation.