

Decay Ring momentum collimation

Pierre Delahaye and Elian Bouquerel, CERN

Asymetric bunch merging

M. Benedikt, S. Hancock, <u>A novel scheme for</u> <u>injection and stacking of radioactive ions at</u> <u>high energy</u>, NIM A 550 (2005) 1–5

S. Hancock et al., <u>Stacking Simulations in the</u> <u>Beta-beam Decay Ring</u>, EPAC 2006

Momentum collimation

Recently Fred Jones implemented the bunch shortening step into ACCSIM for ⁶He starting from a longitunal distribution generated by ESME (when second harmonics=0)

[MeV]

ACCSIM calculation

• Longitudinal phase space before bunch shortening from Steve

 Shortened RF program – 12ms instead of typically 300ms (~2 synchrotron periods)

ACCSIM calculation

• Repeated for ¹⁸Ne

« Taking care that the longitdunal emittance doesn't filament »

Results

- Placement of the primary collimator as defined by A. Chancé in the lattice
- Condition (B. Jeanneret et al.) $\frac{D'}{D} = -\frac{\alpha}{\beta}$

Has been verified

- Collimator element +-X under ACCSIM has been modified/corrected and validated
- Loss maps were created and adapted for an easy use under FLUKA
 - •Number of element where lost, number of turn, X, Y, Z(S), T_X, T_y, T_z direction cosinuses and T_k

Cut after bunch shortening

Total deposited power

Variation +-50% according to average

Similar pattern for ⁶He

FLUKA simulations

- « Minimal » collimation section
 - Straight section + 2nd bump
 - Magnetic fields, beam pipe and collimators

Placement of the collimators

• Primary and « secondary » collimators placed according to the beam enveloppe at δ =2.5‰

1) Only horizontal collimation

2) Not so much effect of the secondary if too far away from the beam enveloppe!!

Different sets of conditions

- Thickness of the primary collimator (10, 20, 30, 50 and 100cm blocks)
- Distance from the beam enveloppe for the secondary collimators
- Material of the collimators (¹²C as for LHC, Copper)

Loss map for a typical set-up

• ⁶He

Results

- ACCSIM (primary collimator)
 - Primary collimator on the beam enveloppe as defined above
 - ⁶He: ~5.6% of the bunch is collimated

Average power ⁶He

Average power (W)

¹²C collimators, secondaries 1m long at 4mm from beam enveloppe

⁶He: 5 10¹² particles lost/cycle

1s collimation time (300ms:3X more!!)

Average power ¹⁸Ne

¹²C collimators, secondaries 1m long at 4mm from beam enveloppe

¹⁸Ne: 3.4 10¹² particles lost/cycle

Average power (W)

1s collimation time (300ms:3X more!!)

Energy balance

- Taking 30 cm as the reference case, only 27% (32%) of energy is dissipated in the system (mainly collimators and beam pipe) for ⁶He (¹⁸Ne)
- In reality the rest will be dumped in the surrounding materials, and in the bump

Escaping energy

More collimation and less dump...

- 3 primaries (30cm) instead of 2 secondaries
 - 2nd and 3rd Collimators are placed on the beam enveloppe

More collimation and less dump...

- Trying another material: 29Cu
 - 1 primary 30 cm 2 secondaries 100cm

Conclusions

- A primary collimator of 30cm will probably stand the deposited power for ⁶He and ¹⁸Ne
- Efficient collimation on the secondaries implies probably the use of other material (Cu?)
- Absorber materials after the primary collimator
- A detailed study of the losses in the surrounding material (magnets in particular!) is absolutely needed
- The losses at the bump might be quite critical
- Not so many fragments passing the bump (³H: 5‰ per primary ⁶He)