Task #3 : 100kW direct target stations

⁶He & ¹⁸Ne beams generation for β -beams

T. Stora on behalf of the Task

We acknowledge the financial support of the European Community under the FP6 "Research Infrastructure Action - Structuring the European Research Area" EURISOL DS Project Contract no. 515768 RIDS .

 $6^{th} \beta$ -beam meeting – CERN – $22^{nd} Oct 2008$

⁶He production

TN 03-25-2006-0003 TN 03-25-2006-0004

PhD thesis, M. Santana Leitner

In-target production : 2 10¹³ ⁶He/s 100kW, 1 GeV proton beam

Ø3cm , 15cm

Ø3cm, 24cm

"Engineered oriented conceptual design"

In-target production: 10^{14 6}He/s 200kW, 2 GeV proton beam

 $6^{th} \beta$ -beam meeting CERN – 22^{nd} Oct 2008

Converter (3 cm diameter), σ_{beam} = 6mm

 $6^{th} \beta$ -beam meeting CERN – 22^{nd} Oct 2008

Existing experimental release curves at CERN-ISOLDE

Design Study

Ξ

From M. Santana-Leitner $6^{th} \beta$ -beam meeting CERN - 22nd Oct 2008

RIBO simulation

30cm long, 4-24 cm diameter thick BeO target

Planned tests at CERN-ISOLDE (2009)

Release efficiency, operation temperature, outgasing, materials compatibility, ageing, etc..

We should obtain ~ 10¹⁰ x $\varepsilon_{released}$ ⁶He⁺/s (~ $\varepsilon_{released}$ nA) for 3 kW beam.

 $6^{th} \beta$ -beam meeting CERN – 22^{nd} Oct 2008

¹⁸Ne production

 Direct spallation of 1 GeV protons onto thick oxide targets AI (p,X) ¹⁸Ne

Silberberg-Tsao, Thin target approx.

Nominal parameters:

3 1010 part/s (Fluka)

 $6^{th} \beta$ -beam meeting CERN – 22nd Oct 2008

Preparation of EURISOL Oxide prototype tests - s1149

Nb-Al₂O₃ brazing

0.01

0,001

1e-04

1e-05

1e-06

1e-07

3

RIUMF

Te

Thermal contact conductance

Plot #9

Nominal parameters

Parameter	Symbol	Units	EURISOL	TRIUMF	
	-		Nominal		
Beam particles	Z_{beam}	-	Proton	Proton	
Beam particle energy	E_{beam}	GeV	1	0.5	
Beam current	I_{beam}	μΑ	100	100	
Beam time structure	-	-	50Hz	cw	
Gaussian beam geometry	σ_{beam}	mm	7	2.6	
Beam wobbling parameters					10-20Hz?
Beam power	$\mathbf{P}_{\mathbf{beam}}$	kW	100	50	10 (20 wob)
Target material	Z _{targ}	-	Nb-Al ₂ O ₃	Nb-Al ₂ O ₃	
			composite foil	composite foil	
Target thickness	Х	g/cm ²	50	10 - 100	16
Target radius (cylinder)	r_{targ}	mm	$3\sigma_{beam}$	$3\sigma_{beam} -$	
				$5\sigma_{beam}$	
Target temperature	T _{targ}	°C	1600	1200-1600	1450
Number of target containers	Itarg	-	4	1	
Ion-source type	IS	-	ECR – (MK7	MK7	
			FEBIAD)	FEBIAD type	In-target prod (ABRABLA)
Ion-current	I _{RIB}	μΑ	5		5.3 10 ⁸ /μC (2 10 ¹¹ /200kW)
Efficiencies	ε _{IS}	%	20(1)		
Plasma ionization outlet	Ø _{out}	mm	3		
diameter					1 + 100 production (710 kVV):
Number of ion sources	jis	-	1	1	5 10 ⁸ ε _{rel} ¹⁸ Ne+ ions/s
Emittance	E _{IS}	mm.mrad	20π		

 $6^{th} \beta$ -beam meeting CERN – $22^{nd} \text{ Oct } 2008$

Alternative scenario for ¹⁸Ne prod (M. Loiselet, S. Mitrofanov)

 β -beam task meeting , Orsay Nov 2007

Alternative scenario for ¹⁸Ne prod (M. Loiselet, S. Mitrofanov)

- Production yield with ³He at 17 MeV in an oxide target (<u>A/₂O₃</u>):
 9 10⁷ 18Ne/µC
- Rough estimation: to produce
- 10¹² ¹⁸Ne/s : 12 mAp of ³He at 17 MeV (~200 kW)

(Eurisol: ~10¹² ¹⁸Ne/s)

..10¹³ ¹⁸Ne/s: 120 mAp of ³He at 17 MeV (~2 MW)

Issues yet to be addressed

LNL targettry range of 20 MeV ³He : ~0.3 mm 9kW is spread onto 4cm diameter disk 2MW would need 60cm diameter disk shape

Report in preparation

 $6^{th} \beta$ -beam meeting CERN – 22nd Oct 2008

Conclusion and Outlook

- Two production scenarios can be put forward for ⁶He and ¹⁸Ne ion beam delivery
- Engineered-oriented validation needs to be performed, with for instance appropriate prototypes and in-beam tests
- We plan to include a distinct β-beam part in the final EURISOL-DS report

 $6^{th} \beta$ -beam meeting CERN – 22^{nd} Oct 2008

Thank you !

 $6^{th} \beta$ -beam meeting CERN – 22^{nd} Oct 2008