

CERN, 23th October 2008

DR MAIN MAGNETS: DESIGN, COST ESTIMATE AND INFRASTRUCTURE REQUIREMENTS

Jens Bruér Magnets, Cryostats and Superconductors Group Accelerator Technology Department, CERN

Acknowledgments: E. Wildner, P. Fessia, R. van Weelderen , L. Williams and E. Todesco

J. E. Bruer

CONTENTS

- Introduction
- Why an open midplane design
- Designs
- Cost estimation
- Infrastructure requirements
- Conclusion

- Deposited power in the dipoles
 - Absorbers between the dipoles absorb most of the high energy particles
 - However, after each absorber there is a build up in the power deposition in each magnet
 - The power deposition in the magnet can reach 10 W/m

INTRODUCTION

- Power deposition locally
 - Should not surpass 4 mW/cm3
 - The aim is to reduce the power deposition on the coil in the magnets by a factor 10 to 1

- Energy deposition in the beta beam dipole
- The energy deposition in the beta beam dipole is concentrated in the midplane
- The superconducting coil in that area will experience a heat build up
- When the temperature surpass a critical value it will result in a quench in the magnet (quench = loosing superconducting property)

- Main idea: To avoid the heat deposition by opening up the magnet in the midplane using an open midplane design
- The peak of the high energy particles will then pass in the gap and thereafter be trapped by absorbers aided by a heat transfer system

MAIN PARAMETERS

- Main important parameters for a dipole magnet
 - High field quality = highly homogenous field
 - Relatively easy to achieve, depends on the positioning of the coil sectors
 - In this case b₃ to b₁₁ < 1, meaning as high field quality as the LHC MB
 - High field strength
 - In particular the central field, where the beam is located
 - The upper limit of this field is called the short sample field, symbol *B*_{ss}
 - Proportional to the amount of superconductors in the coil (up to a critical limit)

Homogenous field

Short sample field, B_{ss}

Design	1	2	3
Aperture radius (mm)	60	90	60
<i>B_{ss}</i> at 1.9 K (T)	6.5	6.8	8.7
Operational field at 1.9 K (T)	5.2	5.5	7.0
<i>B_{ss}</i> at 4.2 K (T)	4.9	5.3	6.7
Operational field at 4.2 K (T)	4.0	4.2	5.4
Gap in midplane (mm)	8.9	12.5	8.7
Yoke (mm)	180	270	240

9 - DR Main magnets: Design, cost estimate and infrastructure requirements

LORENZ FORCES AND MAGNETIC FIELD FOR DESIGN 3

• Magnetic field map

Lorenz forces

Forces on the sectors (kN/m)					
sector	Х	Y	Radial		
1	413	17	408		
2	407	-39	289		
3	225	-16	72		
4	738	-11	707		
5	803	-248	215		
6	1137	-758	695		

COST ESTIMATION

 For magnet fabrication and assembling, calculated for a 13 m long dipole

Cost (MCHF per unit)	Design 1	Design 2	Design 3
Magnet (material + fabrication)	0.71	0.76	0.82
Cryostat	0.1	0.1	0.1
Cryoplants at 1.9 K	0.3	0.3	0.3
Cryoplants at 4.5 K	0.2	0.2	0.2
Total at 4.5 K	1.01	1.06	1.12
Total at 1.9 K	1.11	1.16	1.22

- Two choices, either operating at 1.9 K or at 4.2 K
- 1.9 K require a more expensive cryo system, but allows a higher short sample field (and therefore operational) in the magnets
- If the working temperature 4.2 K is chosen, then these designs are not enough to meet the requirements of an operational field strength of 6 T
 - Then at least one additional layer has to be added to Design 3, resulting in an even bigger coil
 - Will result in a more expensive magnet and might be at the limit of what is possible at 4.2 K

Design	1	2	3
B _{ss} at 1.9 K (T)	6.5	6.8	8.7
Operational field at 1.9 K (T)	5.2	5.5	7.0
B _{ss} at 4.2 K (T)	4.9	5.3	6.7
Operational field at 4.2 K (T)	4.0	4.2	5.4

- By opening up the midplane, the heat deposition on the critical area of the magnet can be decreased by at least a factor 10
- An open midplane design is feasible, both regarding field quality and the desired field strength of 6 T, when operating at 1.9 K.
- At 4.2 K it is harder to reach 6 T, and Design 3 has to be modified with additional layers.
- Further R & D are required, to find out the most cost effective solution