Radioactive Ion Beam Projects in Europe

Juha Äystö University of Jyväskylä, Finland

Principles of radioactive beam production

<u>Current European Facilities</u> ISOL facilities Low-energy facilities Accelerated beam facilities

In-Flight Fragmentation facilities

Future perspectives worldwide FAIR, EURISOL RIKEN, RIA

Current low-energy RIB facilities

Energetic Radioactive Beam Facilities in Europe

ISOLDE at CERN

LEIR: Low Energy Ion Ring

CNGS: Cern Neutrinos to Gran Sasso

Rudolf LEY, PS Division, CERN, 02.09.96 Revised and adapted by Antonella Del Rosso, ETT Div., in collaboration with B. Desfonges, SL Div., and D. Manglunki, PS Div. CERN, 23:05:01

50 % PSB's protons Two separators, push-pull mode operation Several experimental facilities Post-accelerator for RIBs

Production reactions

Accessibility of elements using resonant laser ion source

	Elements studied with dye laser RIS V. Fedoseyev, ISAC-TR											IUMF					
₁H	Dye laser RIS possible												₂ He				
₃ Li	⁴ Be Ti:Sapphire laser RIS demonstrated ⁵ B ⁶ C ⁷ N ⁸ O ⁹ F											10 Ne					
₁₁ Na	₂Mg	Ti:Sapphire laser RIS possible									₁₃ Al	₁₄ SI	₁₅ P	16 S	17 CI	₁₈ Ar	
₁₉ K	₂₀ Ca	₂₁ Sc	₂₂ Ti	₂₃ V	₂₄Cr	₂₅ Mn	₂₆ Fe	₂₇ Co	₂₈ Ni	₂9Cu	₃₀ Zn	₃₁ Ga	₃₂ Ge	₃₃ As	₃₄ Se	₃₅ Br	₃₆ Kr
₃₇ Rb	₃₈ Sr	₃₉ Y	₄₀ Zr	₄₁ Nb	₄₂ Mo	₄₃ Tc	₄₄ Ru	₄₅ Rh	₄₆ Pd	₄₇ Ag	₄₈ Cd	₄₉ In	₅₀ Sn	₅₁ Sb	₅₂ Te	₅₃ I	₅₄ Xe
₅₅ Cs	₅₆ Ba	₅₇ La	₇₂ Hf	₇₃ Ta	₇₄ W	₇₅ Re	₇₆ Os	₇₇ lr	₇₈ Pt	₇₉ Au	₈₀ Hg	₈₁ TI	₈₂ Pb	₈₃ Bi	₈₄ Po	₈₅ At	₈₆ Rn
₈₇ Fr	₈₈ Ra	₈₉ Ac	₁₀₄ <mark>Rf</mark>	105 Ha	106	107	108	109	110	111	112	113					

₅₈ Ce	₉₅ Pr	₆₀ Nd	₆₁ Pm	₆₂ Sm	₆₃ Eu	₆₄ Gd	₆₅ Tb	₆₆ Dy	₆₇ Ho	₆₈ Er	₆₉ Tm	₇₀ Yb	₇₁ Lu
₉₀ Th	₉₁ Pa	₉₂ U	₉₃ Np	₉₄ Pu	₉₅ Am	₉₆ Cm	₉₇ Bk	₉₈ Fc	₉₉ Es	₁₀₀Fm	₁₀₁ Md	₁₀₂ No	₁₀₃ Lr

ISOLDE scientific programme 2004

• Delivered 320 shifts

- SSP: 22
- + Development experiments: 30
- + Tests and beam development: 30

"New" 3 $\alpha \rightarrow {}^{12}C$ rate vs. temperature

REX ISOLDE post accelerator

http://www.ha.physik.uni-muenchen.de/okester/rex/rex.html

Collectivity of the Mg Isotopes

REX-ISOLDE upgrade

The GSI accelerator facilities

Fragments produced from ²³⁸U

European NP Roadmap

ISOL in Europe: the next 5 years

REX-ISOLDE

SPIRAL II

SPES @ Legnaro

Fig. 2.1 - Block diagram of the facility: RFQ means Radio frequency Quadrupole, BNCT Boron Neutron Capture Therapy, ISCL Independently phased Superconducting Cavity Lina and ALPI Acceleratore Linac Per Ioni

Table 1: Yields of prominent isotopes at MAFF compared with accelerator based RIB facilities. The primary beams are 10 μ A of 1.15 GeV 12 C for SPIRAL, 2.5 μ A of 1 GeV protons (or 600 MeV protons for the SC respectively) for ISOLDE and 100 μ A of protons for the ISL.

Isotope	Prod. rate	Half-life	Release	Ioniz.	MAFF	SPIRAL	ISOLDE	ISL
	(s^{-1})	(s)	(%)	(%)	(s^{-1})	(s^{-1})	(s^{-1})	(s^{-1})
⁷⁸ Zn	$2.3 \cdot 10^{9}$	1.47	36	10	$8 \cdot 10^7$	$2 \cdot 10^{6}$	$1 \cdot 10^6$ SC	$6 \cdot 10^{6}$
⁹¹ Kr	$3.3\cdot10^{12}$	8.6	89	15	$4\cdot 10^{11}$	$2\cdot 10^9$	$2 \cdot 10^9$	$4\cdot 10^{10}$
⁹⁴ Kr	$1.1 \cdot 10^{11}$	0.2	16	15	$3\cdot 10^9$	$3\cdot 10^7$	$4\cdot 10^6$	$6 \cdot 10^9$
⁹⁷ Rb	$3\cdot 10^{10}$	0.17	10	80	$2\cdot 10^9$	$5\cdot 10^8$	$3\cdot 10^8$	$7\cdot 10^9$
132 Sn	$7 \cdot 10^{11}$	39.7	89	10	$6 \cdot 10^{10}$	$6 \cdot 10^6$	$8 \cdot 10^7$ SC	$1\cdot 10^{10}$
¹⁴² Xe	$5.2 \cdot 10^{11}$	1.24	7	25	$1\cdot 10^{10}$	$6\cdot 10^7$	$2 \cdot 10^8$	$4\cdot 10^{10}$
¹⁴⁴ Xe	$9.3\cdot 10^9$	1.15	7	25	$2 \cdot 10^8$	$1\cdot 10^6$	$5 \cdot 10^6$	$2\cdot 10^{10}$
¹⁴⁴ Cs	$4.3\cdot 10^{11}$	1.0	47	80	$2\cdot 10^{11}$	$2\cdot 10^{10}$	$3\cdot 10^{10}$	$6\cdot 10^{10}$

Future RNB facilities

Location	Driver	Post-accelerator	Fragment separator	Type of facility
GSI –FAIR	synchrotron, heavy ions: 1.5 A GeV	-	'Super-FRS'	In-Flight
EURISOL	protons, 1 GeV, 1-5 MW	CW Linac, up to 100 A MeV	-	ISOL
USA: RIA Rare Isotope Accelerator	900 MeV protons heavy ions: 400 A MeV, 100 kW	Linac up to 8–15 A MeV	4-dipole Separator	ISOL, In-Flight
JAPAN: RIKEN RIB Factory	Ring-cyclotrons up to 400 A MeV (light ions); up to 150 A MeV (heavy ions)	-	3 fragment Separators storage & cooler rings	In-Flight

International Accelerator For Ions and Antiprotons FAIR (2007-2014)

- Cooled beams
- •Rapidly cycling superconducting magnets

Primary Beams

- 10¹²/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
- Factor 100-1000 over present in intensity
- 2(4)x10¹³/s 30 GeV protons
- 10¹⁰/s ²³⁸U⁷³⁺ up to 35 GeV/u
- up to 90 GeV protons

Secondary Beams

- •Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- Antiprotons 3 30 GeV

Storage and Cooler Rings

- Radioactive beams
- •e⁻ A (or Antiproton-A) collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

Five Scientific Pillars

• Nuclear Structure Physics and Nuclear Astrophysics with RIBs

- Structure of exotic nuclei far off stability;
- Nuclear synthesis in stars and star explosions;
- Fundamental interactions and symmetries

Hadron Physics with Antiproton Beams

- Quark gluon structure and dynamics of "strong" interacting particles;
- Origin of the confinement and mass of hadrons
- Transversity measurement via polarized antiprotons and pol. protons

Physics of Nuclear Matter with Relativistic Nuclear Collisions

- Studies of hadronic matter at high densities;
- Phase transitions in quark matter;
 Properties of neutron stars

Plasma Physics with highly Bunched Beams

Bulk matter at very high pressures, densities, and temperatures

Atomic Physics and Applied Science

- Highly charged atoms
- Low energy anti-protons
- Laser cooling

Present knowledge of nuclear masses

Mass measurements at the International Accelerator Facility for intense beams of ions and antiprotons at GSI

The international FAIR project and its members

RIKEN Layout of RARF/RIBF

Experimental Areas:

1: < 12 MeV/u 2: < 1.5 MeV/u 3: Nonaccelerated 4: In-flight fragments

Summary of facilities and plans

<u>Current facilit</u>	<u>ties</u>
Europe:	In-Flight - GSI, GANIL
·	ISOL - REX ISOLDE, SPIRAL I
N-America:	In-Flight – NSCL at MSU
	ISOL: ISAC I at TRIUMF
	HRIBF at Oak Ridge

Г	L	£ :	1:4:
<u>ru</u>	Ture	Taci	iities

Europe:	SPIRAL II,	SPES, MAFF (n-rich)
	HIE-ISOLD	E (all bems)
		FAIR
		EURISOL
Japan:	RIKEN faci	lity
N-America	ISAC II	RIA