

The EURISOL Design Study

Energetic Radioactive Beam Facilities in Europe

ISOL in Europe: the next 5 years

100kW direct production 5 MW spallation n target → 100 MeV/u RIB

For ⁹⁰Kr :

x 10⁵ increase in yield for ISOL products from existing RIB (e.g. REX-ISOLDE)

X 100 increase from 2nd generation ISOL

EURISOL yields

Fig. 5.2: The region of the chart of nuclides that illustrates the interesting doubly-magic nuclei far from stability and a comparison of their projected rates (as in figure 5.1) at EURISOL and the future GSI facility ('SIS 200').

Peter Butler (CERN & Liverpool)

Eurisol layout

Peter Butler (CERN & Liverpool)

Approved Design Study 2005-2009

- Detailed engineering oriented studies and technica Project starts Feb 1 2005
- 20 partic Kick-Off Orsay 3-4 Feb
- 21 contributors from Europe, Asia and North America
- Total Cost : 33 M€
- Contribution from EU : 9 M€

R&D will benefit 2nd generation ISOL projects

Peter Butler (CERN & Liverpool)

EURISOL: possible sites

- European Joint Laboratory -INFN-Legnaro and GANIL, funded mostly by host state(s)
- **CERN**, funded by subscription
- Green-field site in less-favoured region near nuclear physics institute, funded by European Structured Funds

Review of funding mechanism during DS

CERN option for driver: Superconducting Proton Linac

European NP Roadmap

Future RNB facilities

Location	Driver	Post-accelerator	Fragment separator	Type of facility
GSI –FAIR	synchrotron, heavy ions: 1.5 A GeV	-	'Super-FRS'	In-Flight
EURISOL	protons, 1 GeV, 1-5 MW	CW Linac, up to 100 A MeV	-	ISOL
USA: RIA Rare Isotope Accelerator	900 MeV protons heavy ions: 400 A MeV, 100 kW	Linac up to 8–15 A MeV	4-dipole Separator	ISOL, In-Flight
JAPAN: RIKEN RIB Factory	Ring-cyclotrons up to 400 A MeV (light ions); up to 150 A MeV (heavy ions)	-	3 fragment Separators storage & cooler rings	In-Flight

Peter Butler (CERN & Liverpool)

60 GHz « ECR Duoplasmatron » for gaseous RIB

3 - To deliver a beam with a repetition rate compatible
 with the lifetime of the ions
 Pascal Sortais

Peter Butler (CERN & Liverpool)

Possible sites for EURISOL

RIA Layout

Experimental Areas: 1: < 12 MeV/u 2: < 1.5 MeV/u 3: Nonaccelerated 4: In-flight fragments

Peter Butler (CERN & Liverpool)