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ββOutline

• Beta-beam baseline design
– A baseline scenario, ion choice, main parameters
– Ion production
– Decay ring design issues

• Ongoing work and recent results
– Asymmetric bunch merging for stacking in the decay ring
– Decay ring optics design & injection

• Future R&D within EURISOL 
– The Beta-beam Task

• Conclusions
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ββIntroduction to beta-beams

• Beta-beam proposal by Piero Zucchelli
– A novel concept for a neutrino factory: the beta-beam,      

Phys. Let. B, 532 (2002) 166-172.

• AIM: production of a pure beam of electron neutrinos 
(or antineutrinos) through the beta decay of radioactive 
ions circulating in a high-energy (γ~100) storage ring.

• Baseline scenario
– Avoid anything that requires a “technology jump” which would 

cost time and money (and be risky).
– Make maximum use of the existing infrastructure.
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ββBeta-beam baseline design
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ββMain parameters (1)

• Factors influencing ion choice
– Need to produce reasonable amounts of ions.
– Noble gases preferred - simple diffusion out of target, gaseous at 

room temperature.
– Not too short half-life to get reasonable intensities.
– Not too long half-life as otherwise no decay at high energy.
– Avoid potentially dangerous and long-lived decay products.

• Best compromise
– Helium-6 to produce antineutrinos:

– Neon-18 to produce neutrinos:
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ββMain parameters (2)

• Target values in the decay ring
18Neon10+

– Inj. flux 0.5x1012 ions/batch  
– Energy 55 GeV/u
– Gamma 60
– Rigidity 335 Tm 

6Helium2+

– Inj. flux 9x1012 ions/batch 
– Energy 139 GeV/u
– Gamma 150
– Rigidity 1500 Tm 

• The neutrino beam at the experiment has the “time stamp” of the 
circulating beam in the decay ring.

• The beam has to be concentrated in as few and as short bunches 
as possible to maximize the number of ions/nanosecond for 
background suppression. 

• Aim for a duty factor of 10-4 .  This is a major design challenge!
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ββIon production - ISOL method

• Isotope Separation OnLine method.
• Few GeV proton beam onto fixed target.
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ββ
6He production from 9Be(n,α)

Converter technology: 
(J. Nolen, NPA 701 (2002) 312c)

• Converter technology preferred to direct irradiation (heat transfer and 
efficient cooling allows higher power compared to insulating BeO).

• 6He production rate is ~2x1013 ions/s (dc) for ~200 kW on target.
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ββ
18Ne production

• Spallation of close-by target nuclides

– 24Mg12 (p, p3 n4) 18Ne10.

– Converter technology cannot be used; the beam hits 
directly the magnesium oxide target.

– Production rate for 18Ne is ~ 1x1012 ions/s (dc) for 
~200 kW on target.

– 19Ne can be produced with one order of magnitude 
higher intensity but the half-life is 17 seconds!
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ββFrom dc to very short bunches

1 s

2x1µs

t
B 1 s
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2x1 µs to decay ring
(2x4 bunches of <5 ns) 

PS: 1 s flat bottom with 8 (16) 
injections. Acceleration in ~1 s to 
top PS energy.

Target: dc production during 1 s.

60 GHz ECR: accumulation for 1/8 (1/16) s 
ejection of fully stripped ~20 µs pulse. 
8 (16) batches during 1 s.

RCS: further bunching to ~100 ns  
Acceleration to ~300 MeV/u.              
8 (16) repetitions during 1 s.

SPS: injection of 4 + 4  bunches from PS. 
Acceleration to decay ring energy and ejection. 
Repetition time 8 s.

1 s 7 s

Post accelerator linac: 
acceleration to ~100 MeV/u.     
8 (16) repetitions during 1 s.
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ββDecay ring design aspects

• The ions have to be concentrated in a few very short bunches
– Suppression of atmospheric background via time structure.

• There is an essential need for stacking in the decay ring
– Not enough flux from source and injector chain.
– Lifetime is an order of magnitude larger than injector cycling 

(120 s compared with 8 s SPS cycle).
– Need to stack for at least 10 to 15 injector cycles.

• Cooling is not an option for the stacking process
– Electron cooling is excluded because of the high electron beam 

energy and, in any case, the cooling time is far too long.
– Stochastic cooling is excluded by the high bunch intensities.

• Stacking without cooling “conflicts” with Liouville
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ββAsymmetric bunch pair merging

• Moves a fresh dense bunch into the core of the much larger stack
and pushes less dense phase space areas to larger amplitudes until 
these are cut by the momentum collimation system. 

• Central density is increased with minimal emittance dilution.
• Requirements:

– Dual harmonic rf system.  The decay ring will be equipped with 
40 and 80 MHz systems (to give required bunch length of ~10 ns 
for physics).

– Incoming bunch needs to be positioned in adjacent rf “bucket”
to the stack (i.e., ~10 ns separation!).
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ββSimulation (in the SPS)
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ββTest experiment in the PS

A large bunch is merged 
with a small amount of 
empty phase space.

Longitudinal emittances
are combined.

Minimal blow-up.
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ββTest experiment in CERN PS

Ingredients
– h=8 and h=16 systems of PS.
– Phase and voltage variations.

time

en
er

gy

S. Hancock, M. Benedikt and J-L.Vallet, 
A proof of principle of asymmetric bunch 
pair merging, AB-Note-2003-080 MD
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ββDecay ring injection design aspects

• Asymmetric merging requires fresh bunch injected very close 
longitudinally to existing stack.  Conventional injection with fast 
elements (septa and kickers) is excluded.

• Alternative injection scheme
– Inject an off-momentum beam on matched dispersion trajectory.

– No fast elements required (bumper rise and fall ~10 µs).
– Requires large normalized dispersion at injection point (small 

beam size and large separation due to momentum difference).
– Price to be paid is larger magnet apertures in decay ring.
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ββDecay ring injection layout

Septum & alignment 10 mm

Beam:  ± 2 mm momentum
± 4 mm emittance

Separation:  ~30 mm, 
corresponds to  

3x10-3 off-momentum 

Required bump
22 mm

22 mm

Central orbit undisplaced

• Example machine and beam parameters:
– Dispersion: Dhor = 10 m
– Beta-function: βhor = 20 m
– Moment. spread stack:  ∆p/p  = ±1.0x10-3 (full)
– Moment. spread bunch:  δp/p  = ± 2.0x10-4 (full)
– Emit. (stack, bunch): εgeom = 0.6 πmm 

Stack:  ± 10mm momentum 
± 4 mm emittance

Septum & alignment 10 mm

Injection
First turn after injection
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ββDecay ring arc lattice design

Injection area

β-functions (m) 
Dispersion (m)

Begin of the arc End of the arc

Horizontal βx

Vertical βy

Horizontal Dispersion Dx

FODO structure

Central cells detuned for 
injection

Arc length ~984m

Bending 3.9 T, ~480 m Leff

5 quadrupole families

A. Chance, CEA-Saclay (F)
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ββDecay ring injection envelopes

A. Chance, CEA-Saclay (F)
Envelope (m)

septum

Horizontal envelopes :

∆p/p = 0 bumps off

∆p/p = 0 bumps on

∆p/p = 0.8% bumps off

∆p/p = 0.8% bumps on

Vertical envelopes :

stored beam

injected beam
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ββDecay losses

• Losses during acceleration 
– Full FLUKA simulations in progress for all 

stages (M. Magistris and M. Silari, Parameters of 
radiological interest for a beta-beam decay ring, 
TIS-2003-017-RP-TN).

• Preliminary results:
– Manageable in low-energy part.
– PS heavily activated (1 s flat bottom).

• Collimation?  New machine?
– SPS ok.
– Decay ring losses:

• Tritium and sodium production in rock is 
well below national limits.
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FLUKA simulated losses in 
surrounding rock (no 
public health implications)

• Reasonable requirements for tunnel wall 
thickness to enable decommissioning of the 
tunnel and fixation of tritium and sodium.

• Heat load should be ok for superconductor.
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ββFuture R&D

• Future beta-beam R&D together with EURISOL project
• Design Study in the 6th Framework Programme of the EU

• The EURISOL Project
– Design of an ISOL type (nuclear physics) facility.
– Performance three orders of magnitude above existing facilities.
– A first feasibility / conceptual design study was done within FP5.
– Strong synergies with the low-energy part of the beta-beam:

• Ion production (proton driver, high power targets).
• Beam preparation (cleaning, ionization, bunching).
• First stage acceleration (post accelerator ~100 MeV/u).
• Radiation protection and safety issues.
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ββBeta-beam task

From exit of the heavy ion Linac (~100 MeV/u) to the decay ring (~100 GeV/u). 
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ββBeta-beam sub-tasks

• Beta-beam task starts at exit of EURISOL post accelerator and comprises 
the conceptual design of the complete chain up to the decay ring.

• Participating insitutes: CERN, CEA-Saclay, IN2P3, CLRC-RAL, GSI, 
MSL-Stockholm.

• Organized by a steering committee overseeing 3 sub-tasks.
– ST 1: Design of the low-energy ring(s).
– ST 2: Ion acceleration in PS/SPS and required upgrades of the existing 

machines including new designs to eventually replace PS/SPS.
– ST 3: Design of the high-energy decay ring.
– Detailed work and manpower planning is under way.
– Around 38 (13 from EU) man-years for beta-beam R&D over next 4 

years (only within beta-beam task, not including linked tasks).
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ββConclusions

• Well-established beta-beam baseline scenario.

• R&D work has started on several critical aspects (mainly 
decay ring).

• Beta-Beam Task well integrated in the EURISOL DS.

• Strong synergies between Beta-beam and EURISOL.

• Definitive EU approval.

• Detailed planning for next 4 years under way.
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