Klaus Jungmann RAL, January 2005 Fundamental Interactions

Fundamental Symmetries and Interactions

Beta Beam Workshop

Rutherford Appleton Laboratory, 17-18 of January, 2005

- Forces and Symmetries
- Fundamental Fermions
- Discrete Symmetries
- Properties of Known Basic Interactions

\Rightarrow only touching a few examples

Klaus Jungmann, Kernfysisch Versneller Instituut, Groningen

Recommendations

Physics Topics

- > The Nature of Neutrinos
 - > Oscillations / Masses / $0v2\beta$ -decay
- > T and CP Violation
 - > edm's, D (R) coeff. in β -decays, D⁰
- Rare and Forbidden Decays
 - > $0\nu 2\beta$ -decay, n-n^{bar}, M-M^{bar}, $\mu \rightarrow e\gamma$,
 - > $\mu \rightarrow 3e, \ \mu N \rightarrow N e$
- Correlations in β-decay
 - > non V-A in β-decay
- > Unitarity of CKM-Matrix
 - > n-, π - β , (superallowed β), K-decays
- Parity Nonconservation in Atoms
 - > Cs, Fr, Ra, Ba⁺, Ra⁺
- > CPT Conservation
 - ▶ n, e, p, μ
- Precision Studies within The Standard Model
 - > Constants, QCD, QED, Nuclear Structure

of NuPECC working group 2003

Adequate Environment

- Human resources
- > Theoretical Support
- Positions at Universities
 - > Experimentalists and Theorists

Facilities

- > High Power Proton Driver
 - > Several MW
 - > Target Research
- Cold and Ultracold Neutrons
- Low Energy Radioactive Beams
- > Improved Trapping Facilities
- > Underground Facilities

Recommendations

Physics Topics

- > The Nature of Neutrinos
 - > Oscillations / Masses / $0v2\beta$ -decay
- > T and CP Violation
 - > edm's, D (R) coeff. in β -decays, D⁰
- Rare and Forbidden Decays
 - > $0\nu 2\beta$ -decay, n-n^{bar}, M-M^{bar}, $\mu \rightarrow e\gamma$,
 - > $\mu \rightarrow 3e, \ \mu N \rightarrow N e$
- Correlations in β-decay
 - > non V-A in β-decay
- > Unitarity of CKM-Matrix
 - > **n-**, π - β , (superallowed β), K-decays
- Parity Nonconservation in Atoms
 - > Cs, Fr, Ra, Ba⁺, Ra⁺
- > CPT Conservation
 - > n, e, p, μ
- Precision Studies within The Standard Model
 - > Constants, QCD, QED, Nuclear Structure

Relating to a MW Proton Machine

Adequate Environment

- Human resources
- > Theoretical Support
- Positions at Universities
 - > Experimentalists and Theorists

Facilities

- > High Power Proton Driver
 - > Several MW
 - > Target Research
- Cold and Ultracold Neutrons
- > Low Energy Radioactive Beams
- > Improved Trapping Facilities
- > Underground Facilities

What are we concerned with P

fundamental := " forming a foundation or basis a principle, law etc. serving as a basis"

Standard Model

- 3 Fundamental Forces
 - Electromagnetic Weak Strong
- 12 Fundamental Fermions
 - Quarks, Leptons
- 13 Gauge Bosons
 - γ,W⁺, W⁻, Z⁰, H, 8 Gluons

However

- many open questions
 - Why 3 generations ?
 - Why some 30 Parameters?
 - Why CP violation ?
 - Why us?
 -
- Gravity not included
- No Combind Theory of Gravity and Quantum Mechanics

Fundamental Fermions

- Neutrinos
 - Neutrino Oscillations
 - Neutrino Masses
- Quarks
 - Unitarity of CKM Matrix
- Rare decays
 - ♦ Baryon Number
 - Lepton Number/Lepton Flavour
- **New Interactions in Nuclear and Muon β-Decay**

Neutrino-Experiments

SNO

Superkamiokande

 $P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2(2\Theta) * \sin^2\left(\frac{\Delta m_{ij}^2 * L}{4E}\right)$

Recent observations could be explained by oscillations of massive neutrinos.

Many Remaining Problems

- really oscillations ?
- sensitive to Δm^2
- Masses of Neutrino
- Nature of Neutrino
 - Dirac
 - Majorana
- \rightarrow Neutrinoless Double β -Decay
- Direct Mass Measurements are indicated
- → Spectrometer
- Long Baseline Experiments
- $\rightarrow \beta$ -beams
- \rightarrow new neutrino detectors ?

 $\begin{array}{l} \textbf{Neutrinoless Double } \beta \textbf{-Decay} \\ (A,Z) \rightarrow (A,Z+2) + 2e^{-} \\ \textbf{1/T}_{1/2} = \ \textbf{G}_{0v} \ (\textbf{E}_0,Z) \mid \textbf{M}_{GT} + (\textbf{g}_V/\textbf{g}_A)^2 \cdot \textbf{M}_F \mid^2 < \textbf{m}_v^{>2} \end{array}$

- independent experiment(s) with different technologies required
- need nuclear matrix elements

Direct v mass Measurements: Towards KATRIN

Present Limit : $m(v_e) < 2.2 \text{ eV} (95\% \text{ C.L.})$

KATRIN sensitivity : some 10 times better

Fundamental Fermions

Neutrinos

- Neutrino Oscillations
- Neutrino Masses

Quarks

Unitarity of CKM Matrix

- Rare decays
 - Baryon Number
 - Lepton Number/Lepton Flavour
- **■** New Interactions in Nuclear and Muon β-Decay

Unitarity of Cabbibo-Kobayashi-Maskawa Matrix

CKM Matrix couples weak and mass quark eigenstaes:

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} =$$

(0.9739(5)	0.221(6)	0.0036(12)
	0.223(4)	0.9740(8)	0.041(3)
	0.008(4)	0.0041(4)	0.9992(2)

Unitarity:

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$
$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 - \Delta$$

Unitarity of Cabbibo-Kobayashi-Maskawa Matrix

A. Czarnecki W. Marciano, A. Sirlin, Hep-ph/0406324

Unitarity of Cabbibo-Kobayashi-Maskawa Matrix

Fundamental Fermions

- Neutrinos
 - Neutrino Oscillations
 - Neutrino Masses
- Quarks
 - Unitarity of CKM Matrix
- Rare decays
 - Baryon Number
 - Lepton Number/Lepton Flavour
- **New Interactions in Nuclear and Muon β-Decay**

⇒ no real chance yet BUT Higher values predicted in Speculative Models

The MEG experiment at PSI aims for $\mu \rightarrow e \gamma$

Detector outline

- Stopped beam of >10⁷ μ /sec in a 150 μm target
- Liquid Xenon calorimeter for γ detection (scintillation)
 - fast: 4 / 22 / 45 ns
 - high LY: ~ 0.8 * NaI
 - short X₀: 2.77 cm
- Solenoid spectrometer & drift chambers for e⁺ momentum
- Scintillation counters for e⁺ timing

Muon Physics Possibilities at Any High Power Proton Driver i.e. ≥ 4 MW

		CT L	T / T	ŝæ			A (
Experiment	q_{μ}	$\int I_{\mu}dt$	I_0/I_{μ}	δT	ΔT	E_{μ}	$\Delta p_{\mu}/p_{\mu}$
				[ns]	$[\mu s]$	[MeV]	[%]
$\mu^- N ightarrow e^- N^\dagger$	_	10^{19}	$< 10^{-10}$	≤ 100	≥ 1	< 20	< 10
$\mu^- N \to e^- N^{\ddagger}$	_	10^{19}	n/a	n/a	n/a	< 20	< 10
$\mu ightarrow e \gamma$	+	10^{17}	n/a	n/a	n/a	14	< 10
$\mu \rightarrow eee$	+	10^{17}	n/a	n/a	n/a	14	< 10
$\mu^+e^- ightarrow \mu^-e^+$	+	10^{16}	$< 10^{-4}$	< 1000	≥ 20	14	12
$ au_{\mu}$	+	10^{14}	$< 10^{-4}$	< 100	≥ 20	4	110
transvers.polariz.	+	10^{16}	$< 10^{-4}$	< 0.5	> 0.02	30-40	13
$g_{\mu}-2$	±	10^{15}	$< 10^{-7}$	≤ 50	$\geq 10^{3}$	3100	10^{-2}
edm_{μ}	$ \pm$	10^{16}	$< 10^{-6}$	≤ 50	$\geq 10^{3}$	≤ 1000	$\leq 10^{-3}$
M_{HFS}	+	10^{15}	$< 10^{-4}$	≤ 1000	≥ 20	4	13
M_{1s2s}	+	10^{14}	$< 10^{-3}$	≤ 500	$\geq 10^3$	14	12
$\mu^{-}atoms$	—	10^{14}	$< 10^{-3}$	≤ 500	≥ 20	14	15
condensed matter	±	10^{14}	$< 10^{-3}$	< 50	≥ 20	14	15
(incl.bio sciences)							

Fundamental Fermions

Neutrinos

- Neutrino Oscillations
- Neutrino Masses
- Quarks
 - Unitarity of CKM Matrix
- Rare decays
 - Baryon Number
 - Lepton Number/Lepton Flavour

New Interactions in Nuclear and Muon β-Decay

New Interactions in Nuclear and Muon β -Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

$$rac{\mathrm{d}^2 W}{\mathrm{d}\Omega_e \mathrm{d}\Omega_{oldsymbol{
u}}} \sim 1 + a \, rac{oldsymbol{p} \cdot \hat{oldsymbol{q}}}{E} + b \, \Gamma \, rac{m_e}{E} + \langle oldsymbol{J}
angle \cdot \left[A \, rac{oldsymbol{p}}{E} + B \, \hat{oldsymbol{q}} + D \, rac{oldsymbol{p} imes \hat{oldsymbol{q}}}{E}
ight] + \langle oldsymbol{\sigma}
angle \cdot \left[G \, rac{oldsymbol{p}}{E} + Q \, \langle oldsymbol{J}
angle + R \, \langle oldsymbol{J}
angle imes rac{oldsymbol{p}}{E}
ight]$$

 \Rightarrow nuclear β -decays, Experiments in Traps \Rightarrow muon decays, Michel parameters

Traps for weak interaction physics :

1. Atom traps :	 TRIUMF-ISAC, ^{38m}K, βν-correlation (J. Behr et al.) A. Gorelov et al., Hyperfine Interactions 127 (2000) 373 LBNL & UC Berkeley, ²¹Na, βν-correlation (S.J. Freedman et al.) N. Scielzo, Ph. D. Thesis (2003) LANL Los Alamos, ⁸²Rb, β-asymmetry (D. Vieira et al.) S.G. Crane et al., Phys. Rev. Lett. 86 (2001) 2967 KVI-Groningen, Na, Ne, Mg, D-coefficient (K. Jungmann et al.) Ra, EDM experiment
	G.P. Berg et al., NIM B204 (2003) 526
2. Ion traps :	 LPC-Caen, ⁶He, βν-correlation (O. Naviliat-Cuncic et al.) G. Ban et al., NIM A518 (2004) 712
	- WITCH, Leuven-ISOLDE, ³⁵ Ar, βv-correlation (N. Severijns et al.)
	 D. Beck et al., Nucl. Inst. Methods Phys. Res., A 503 (2003) 567 - CPT-trap Argonne, ¹⁴O, βν-correlation (G. Savard et al.) G. Savard et al., Nucl. Phys. A654 (1999) 961c - ISOLTRAP-CERN, mass for 0+ → 0+ decays (K. Blaum et al.)

Some TRAPS for Weak Interaction Studies

A. Gorelov et al., Hyperfine Interactions 127 (2000) 373

TRIUMF

	MCP signal	illia E Tim	Тур
-			Source
ope	zioset.	open;	Deita 248.0 m
1st eldcap	 traja postrangon (x2g) ions in trags 		40326
open	xtosed	ejection (open)	Cursor 6.000,e
last endca	pi = trapi exit (x20)		-
	trigger pulga (ion source)		254.0.0

New Interactions in Nuclear and Muon β -Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

 \Rightarrow muon decays, Michel parameters

TRIµP Combined Fragment and Recoil Separator

TRI^µP Separator commissioning

Yield of ²¹Na at the focal plane: 5.3 MHz/kW Now achieved: > 99% ²¹Na

Muon Decay: Michel Parameters

TRIUMF Weak Interaction Symmetry Test: "TWIST"

http://twist.triumf.ca/~e614/experiment.html

	PDG 02	V-A
ρ	0.7518 (26)	0.75
δ	0.7486 (38)	0.75
η	-0.007 (13)	0
٤	1.0045 (86)	1
٤'	0.998 (45)	1
٤"	0.65 (36)	1
η	0.012 (16)	0
α/Α	-0.0002 (43)	0
<u>β</u> /A	-0.0015 (63)	0

goal: detemine ρ , δ , $P_{\mu}\xi$ with a relative precision at the 10⁻⁴ level

prelim. results expected in 2004

from O. Naviliat-Cuncic

Discrete Symmetries

Parity

- Parity Nonconservation in Atoms
- Nuclear Anapole Moments
- Parity Violation in Electron-Scattering
- Time Reversal and CP-Violation
 - Electric Dipole Moments
 - R and D Coefficients in β-Decay
- CPT Invariance

Discrete Symmetries

Parity

- Parity Nonconservation in Atoms
- Nuclear Anapole Moments
- Parity Violation in Electron-Scattering

Time Reversal and CP-Violation

- Electric Dipole Moments
- R and D Coefficients in β-Decay
- CPT Invariance

Permanent Electric Dipole Moments Violate Discrete Fundmental Symmetries

EDM violates:

- Parity
- Time reversal
- CP- conservation

(if **CPT** conservation assumed)

Standardd Model values are tiny, hence: An observed EDM would be Sign of New Physics beyond Standard Theory

Some EDM Experiments compared

EDMs – Where do they come from ?

(are they just "painted" to particles? Why different experiments?)

- electron
- quark
- muon
- neutron/ proton
- deuteron
- ⁶Li
- heavy nuclei (e.g. Ra, Fr)
- atoms
- molecules

intrinsic? intrinsic? second generation different ? from quark EDM ? property of strong interactions? new interactions? basic nuclear forces CP violating? pion exchange ? many body nuclear mechanism? enhancement by CP-odd nuclear forces, nuclear "shape" can have large enhancement, sensitive to electron or nucleus EDMs large enhancement factors, sensitive to electron EDM

Origin of EDMs

Generic EDM Experiment

Radium Permanent Electric Dipole Moment

TRIµP

Ra also interesting for weak interaction effects Anapole moment, weak charge Dzuba el al., PRA, 062509 (2000) **Benefits of Radium**

• near degeneracy of ${}^{3}P_{1}$ and ${}^{3}D_{2}$ $\Rightarrow \sim 40\ 000\ enhancement$

 some nuclei strongly deformed
 ⇒ nuclear enhancement 50~1000

- ³D: electron spins parallel
- \Rightarrow electron EDM
- ¹S : electron Spins anti-parallel
- \Rightarrow atomic / nuclear EDM

How does a ring edm experiment work?

Some Candidate Nuclei for EDM in Ring Searches

Nucleus	Spin J	μ/μ_N	Reduced Anomaly a	T _{1/2}
$^{139}_{57}$ La	7/2	+2.789	-0.0305	
¹²³ 51Sb	7/2	2.550	-0.1215	
$^{137}55}$ Cs	7/2	+2.8413	0.0119	30y
²²³ 87Fr	3/2	+1.17	< 0.02	22 min
⁶ ₃ Li	1	+0.8220	-0.1779	
2 ₁ H	1	+0.8574	-0.1426	
$^{75}_{32}$ Ge	1/2	+0.510	+0.195	82.8 m
¹⁵⁷ 69Tm	1/2	+0.476	0.083	3.6 m

Need Schiff moment calculations: Particularly in region of octupole deformed nuclei

Why a deuteron edm experiment

Deuteron: $d_{\mathcal{D}} = -4.67 d_d^c + 5.22 d_u^c$ **Neutron:** $d_n = -0.01 d_d^c + 0.49 d_u^c$

"Thus, these two EDM measurements probe different linear combinations of d_d^c and d_u^c in this case. Moreover, the deuteron could be significantly more sensitive than the neutron."

C.P. Liu and R.G.E Timmermans, nucl-th/0408060, PRC accepted (2004)

Discrete Symmetries

Parity

- Parity Nonconservation in Atoms
- Nuclear Anapole Moments
- Parity Violation in Electron-Scattering

Time Reversal and CP-Violation

- Electric Dipole Moments
- R and D Coefficients in β-Decay

CPT Invariance

Time Reversal Violation in β-decay: Correlation measurements

$$\begin{aligned} \frac{\mathrm{d}^2 W}{\mathrm{d}\Omega_e \mathrm{d}\Omega_{\nu}} \sim & 1 + a \, \frac{\boldsymbol{p} \cdot \hat{\boldsymbol{q}}}{E} + b \, \Gamma \, \frac{m_e}{E} \\ &+ \langle \boldsymbol{J} \rangle \cdot \left[A \, \frac{\boldsymbol{p}}{E} + B \, \hat{\boldsymbol{q}} + D \, \frac{\boldsymbol{\lambda} \times \hat{\boldsymbol{q}}}{E} \right] \\ &+ \langle \boldsymbol{\sigma} \rangle \cdot \left[G \, \frac{\boldsymbol{p}}{E} + Q \, \langle \boldsymbol{J} \rangle + R \, \langle \boldsymbol{J} \rangle \times \frac{\boldsymbol{p}}{E} \right] \end{aligned}$$

- R and D test both Time Reversal Violation
 - $D \rightarrow \text{most potential}$
 - $\mathbf{R} \rightarrow \text{scalar and tensor (EDM, a)}$
 - technique *D* measurements yield *a*, *A*, *b*, *B*

 $\langle \vec{J} \cdot \vec{p} \times \vec{q} \rangle \neq 0$?

Discrete Symmetries

Parity

- Parity Nonconservation in Atoms
- Nuclear Anapole Moments
- Parity Violation in Electron-Scattering
- **•** Time Reversal and CP-Violation
 - Electric Dipole Moments
 - R and D Coefficients in β-Decay

CPT Invariance

CPT – Violation Lorentz Invariance Violation

What is best CPT test ?

often quoted:

- K⁰- K⁰ mass difference (10⁻¹⁸)
- e⁻ e⁺ g- factors (2* 10⁻¹²)
- We need an interaction with a finite strength ! New Ansatz (Kostelecky)

• K ⁰	≈ 10 ⁻¹⁸	GeV/c ²
• n	≈ 10 ⁻³⁰	GeV/c ²
	10.24	

- p $\approx 10^{-24} \text{ GeV/c}^2$
- e $\approx 10^{-27} \text{ GeV/c}^2$

• μ $\approx 10^{-23} \text{ GeV/c}^2$

• Future: Anti hydrogen ≈ 10⁻²² GeV/c²

Leptons in External Magnetic Field

CPT and Lorentz Invariance from Muon Experiments

V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001)

Muonium:

new interaction below

2*10-23 GeV

Muon g-2:

new interaction below

4*10-22 GeV (CERN)

15 times better expected from BNL when analysis will be completed

Properties of Known Basic Interactions

- Electromagnetism and Fundamental Constants
 - ♦ QED, Lamb Shift
 - ♦ Muonium and Muon g-2
 - Muonic Hydrogen and Proton Radius
 - Exotic Atoms
 - ◆ Does α_{OED} vary with time?
- **QCD**
 - Strong Interaction Shift
 - Scattering Lengths
- Gravity
 - Hints of strings/Membranes?

Properties of known Basic Interactions

"Proton Radius"

Muonic Hydrogen Lamb Shift

Muon g-2

 Search for New Physics

 What are the hardronic corrections?

 • e⁺+e⁻ → hadrons

 • e⁺+e⁻ → γ + hadrons

 New activities planned

 • statistics limited experiment

 • J-PARC, BNL, ...

 • Fundamental constants needed

 • Muonium

Why a Nuon EDN or g-2 Experiment P

The muon magnetic anomaly a_µ and the muon electric dipole moment d_µ are real and imaginary part of one single complex quantity.

$$\mathbf{d}_{\mu} = 3*10^{-22} * (\mathbf{a}_{\mu}^{NP} / 3*10^{-9}) * \tan \phi_{CP} e cm$$

a New Physics related muon magnetic anomaly would be related to an EDM through a CP violating phase $\phi_{CP.}$

 Particular models (L/R symmetry) predict nonlinear mass scaling for lepton EDMs. For muon 5*10⁻²³ e cm possible.

Properties of Known Basic Interactions

- Electromagnetism and Fundamental Constants
 - ◆ QED, Lamb Shift
 - Muonium and Muon g-2
 - Muonic Hydrogen and Proton Radius
 - Exotic Atoms
 - Does α_{QED} vary with time?
- **QCD**
 - Strong Interaction Shift
 - Scattering Lengths
- Gravity
 - Hints of strings/Membranes?

Standing Waves of Ultra Cold Neutrons in a gravitational field

mgz

....etc.

What's needed P

	Physics Topics	High Power Proton Driver		
≻	The Nature of Neutrinos	~1GeV	~ 30 GeV	
	> Oscillations / Masses / 0v2β-decay	\otimes	\otimes	
≻	T and CP Violation			
	> edm's, D (R) coeff. in β -decays, D ⁰	\otimes	\otimes	
≻	Rare and Forbidden Decays			
	» 0v2β-decay, n-n ^{bar} , M-M ^{bar} , μ→eγ,	\otimes		
	$ \qquad \qquad \mu \to 3e, \ \mu \to N e $	\otimes		
۶	Correlations in β-decay			
	> non V-A in β-decay	\otimes		
۶	Unitarity of CKM-Matrix			
	> n- , π - β , (superallowed β), K-decays	\otimes	\otimes	
≻	Parity Nonconservation in Atoms	_	_	
	Cs, Fr, Ra, Ba ⁺ , Ra ⁺			
۶	CPT Conservation			
	> n, e, p, μ	\otimes	\otimes	
≻	Precision Studies within The Standard			
	Model	\bigotimes	\bigotimes	
	 Constants, QCD,QED, Nuclear Structure 	O		

Summary Trento 'Fundamental Interactions' Workshop, June 2004

Experiments requiring Theory

Atomic ParityViolation: New Physics potential? Atomic Theory? EDMs: Schiff moments of deformed nuclei? Relation of forw scatt, to fundamental issues $0\nu 2\beta$ experiments: Nuclear Matrix elements g-2 experiments: hadronic corrections CPT[•] What are small numbers good for?

Atomic Parity Violation: Bohr-Weiskopf Effect, **Breit Interaction** β-decay: Atomic Shell Corrections? Variation of constants other than α

Loose Ends

Physics Issues

Fundamental Symmetries & Interactions

Forces & Symmetries Fundamental Fermions Discrete Symmetries Properties of known Interactions

Theory requiring Experiments

Schiff moments for EDM exp. (Ra,Rn) Nature of neutrinos: Dirac/Majorana Confirmation of HDM $0\nu 2\beta$ expt. CP violation for neutrinos direct neutrino mass measurements Variation of α ? Values of fundamental Const. Hadronic vac. polarization Cosmic background v's

Less Urgent Activities

Conclusions

Large number of Possibilities to

- Find Physics Beyond Standard Theory
- Determine Standard Model important Parameters

> Urgent issues to be solved in Theory and Experiment

- In the area of Fundamental Symmetries and Interactions there is large overlap between Astro-, Particle-, and Nuclear- Physics
 - ⇒ Fields merge
 - ⇒ Low energy Precision and High Energy Direct approaches are complementary

Enourmous benefit from a High Power Proton machine expected

Coordinated approaches could be well beneficial

Let's just do it 🗸

Thank YOU !

Fundamental Symmetries and Interactions

Drawing on :

> Work of NuPECC Long Range Plan Working group on Fundamental Interactions, 2003 :

K. Jungmann (NL), H. Abele (D), L. Corradi (I), P. Herczeg (USA),
I.B. Khriplovich (RU), O. Nviliat (F), N. Severijns (B),
L. Simons (CH), C. Weinheimer (D), H.W. Wilschut (NL)
H. Leeb (A), C. Bargholtz (S)
Assisted by: W. Heil, P. Indelicato, F. Maas, K. Pachucki, R.G Timmermans, C. Volpe, K. Zuber

- » NSAC Long Range Plan 2002
- > EURISOL Physics Case 2004
- Workshop on "Fundamental Interactions" at ECT*, June 21-25, 2004

Fig. 42: Super-allowed $0+ \rightarrow 0+$ transitions which allow us to test the CVC hypothesis of the weak interaction. The values for the heavier nuclei have been measured using the relatively weak intensities from present radioactive beam facilities. Using these data to check the theoretically determined corrections needs higher statistical precision.

EDM: What Object to Choose ?

	limit on edm		improvement	new physics
particle	d [e cm] (95% C.L.)	system	factor	limits $[e \text{ cm}]$
e	1.9×10^{-27}	205 Tl	>1	10^{-27}
μ	1.05×10^{-19}	rest frame E	10^{3}	10^{-22}
τ	3.1×10^{-16}	$(e^+e^- \rightarrow \tau^+\tau^-\gamma)$	10^{4}	10^{-20}
p	6.5×10^{-23}	²⁰⁵ Tl-F	10^{4}	5×10^{-26}
n	7.5×10^{-26}	ultracold neutrons	>1	5×10^{-26}
Λ	1.5×10^{-16}	rest frame E	10^{7}	10^{-23}
¹⁹⁹ Hg	2.1×10^{-28}	¹⁹⁹ Hg	>1	10^{-28}
Ξ_0	?	as Λ	?	10^{-23}

²⁰⁵Tl: $d = -585 d_e$

Table 1: Current limits on edm's, converted to a common 95% confidence limit. The improvement factor indicates how much the measurement needs to be improved to yield new physics limits. No data in the charmed sector

Precession frequency ω due to a particle with anomalous magnetic moment a = g/2 - 1 and edm d

$$\begin{split} \omega &= & -\frac{e}{m} \left[a \mathbf{B} - a \frac{\gamma}{\gamma + 1} \mathbf{v} (\mathbf{v} \cdot \mathbf{B}) - \left(a - \frac{1}{\gamma^2 - 1} \right) \mathbf{v} \times \mathbf{E} \right] \\ &- \frac{d}{2} \left[\mathbf{E} - \frac{\gamma}{\gamma + 1} \mathbf{v} (\mathbf{v} \cdot \mathbf{E}) + \mathbf{v} \times \mathbf{B} \right] \end{split}$$

 199 Hg: d \propto nucl \times atom

Ra: Ra/Hg= $(10^{>1})(10^{>3})$

Theoretical input needed

New Interactions in Nuclear and Muon β -Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

$$\frac{\mathrm{d}^{2}W}{\mathrm{d}\Omega_{e}\mathrm{d}\Omega_{\nu}} \sim 1 + a \frac{\boldsymbol{p} \cdot \hat{\boldsymbol{q}}}{E} + b\Gamma \frac{m_{e}}{E} \\ + \langle \boldsymbol{J} \rangle \cdot \left[A \frac{\boldsymbol{p}}{E} + B \, \hat{\boldsymbol{q}} + D \, \frac{\boldsymbol{p} \times \hat{\boldsymbol{q}}}{E} \right] \\ + \langle \boldsymbol{\sigma} \rangle \cdot \left[G \, \frac{\boldsymbol{p}}{E} + Q \, \langle \boldsymbol{J} \rangle + R \, \langle \boldsymbol{J} \rangle \times \frac{\boldsymbol{p}}{E} \right]$$

 \Rightarrow nuclear β -decays, Experiments in Traps \Rightarrow muon decays, Michel parameters

• Muonium