Importance of neutrino oscillation parameter measurements

1

Steve King, Beta beam meeting

Neutrino mixing

Exact analytical formula for neutrino oscillations in matter

$$\begin{split} P(\nu_{\alpha} \rightarrow \nu_{\beta}) &= \delta_{\alpha\beta} - 4 \sum_{j < k} \Re \left(\tilde{X}_{j}^{\alpha\beta} \tilde{X}_{k}^{\alpha\beta*} \right) \sin^{2} \left(\frac{\Delta \tilde{E}_{jk}L}{2} \right) \\ \text{Kimura, Takamura,} \\ \text{Yokomakura 02} \\ &+ 2 \sum_{j < k} \Im \left(\tilde{X}_{j}^{\alpha\beta} \tilde{X}_{k}^{\alpha\beta*} \right) \sin \left(\Delta \tilde{E}_{jk}L \right), \\ \text{where } \Delta \tilde{E}_{jk} &\equiv \tilde{E}_{j} - \tilde{E}_{k}. \quad \tilde{X}_{j}^{\alpha\beta} &\equiv \tilde{U}_{\alpha j} \tilde{U}_{\beta j}^{*} \end{split}$$

Eigenvalues of the matrix below:

 $U \operatorname{diag}(E_1, E_2, E_3) U^{-1} + \operatorname{diag}(\sqrt{2}G_F N_e, 0, 0), \text{ where } E_j \equiv \sqrt{p^2 + m_j^2}.$

28/01/2005

Kimura,

Super-Kamiokande: Atmospheric Neutrinos and Theta_23

- Production of neutrinos in the atmosphere (expected neutrino flux ratio: mu: e = 2 : 1)
- detection (sensitive to direction) in
 SuperKamikande (Cerenkov,
 50000 t water in Kamioka mine, Japan)
- atmospheric neutrino deficit

Explanation by neutrino oscillations with: Theta_23 ~45° Delta m²atm ~2.10⁻³ eV²

KamLAND: Large Mixing Angle (LMA) MSW

- electron antineutrinos from reactors (flux quite well known) mainly in Japan
- average distance to detector (baseline)
 ~250 km
- search for antineutrino disappearance (conversion into different flavour)

Results compatible with neutrino oscillations (LMA MSW solution confirmed): Theta_12 ~30° Delta m²sol ~ 7.10⁻⁵ eV²

28/01/2005

Steve King, Beta ł

Neutrino oscillations c.2003

For a review see SFK hep-ph/0310204

28/01/2005

Steve King, Beta beam meeting

Detailed fits c.2004

from: Maltoni, Schwetz, Tortola, Valle ('04)

Neutrino Mixing Angles

Three Neutrino Mass Patterns

parameter	best fit	2σ	3σ	4σ
$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	7.9	7.3 - 8.5	7.1 - 8.9	6.8 - 9.3
$\Delta m_{31}^2 \left[10^{-3} \mathrm{eV}^2 \right]$	2.2	1.7 – 2.9	1.4 - 3.3	1.1 - 3.7

Steve King, Beta beam meeting

The Unanswered Questions

APS study Mohapatra et al hep-ph/0412099

- Are neutrinos Dirac or Majorana?
- What is the absolute mass scale of neutrinos?
- How small is θ_{13} ?
- How "maximal" is θ_{23} ?
- Is there CP Violation in the neutrino sector?
- Is the mass hierarchy inverted or normal?
- Is the LSND evidence for oscillation true? Are there sterile neutrino(s)?

Amenable to LBL — neutrino oscillation experiments

How we could learn about the nature and pattern of neutrino masses?

APS study Mohapatra et al hep-ph/0412099

$etaeta_{0 u}$	Δm_{13}^{*}	KATRIN	Conclusion	
yes	> 0	yes	Degenerate, Majorana	
yes	> 0	No	Degenerate, Majorana	
yes	< 0	no	Inverted, Majorana	
yes	< 0	yes	Degenerate, Majorana	
no	> 0	no	Normal, Dirac or Majorana	
no	< 0	no	Dirac	
no	< 0	yes	Dirac	
no	> 0	yes	Dirac	

* Amenable to LBL neutrino oscillation experiments

Compilation of theoretical predictions for deviations from maximal atmospheric mixing

Model(s)	Refs.	$ 0.5 - \sin^2 \theta_{23} $
Minimal SO(10)	[14]	> 0.16
SO(10) + flavour symmetry	[15-17]	$\lesssim 0.05$
SO(10) + texture	[18]	$\lesssim 0.11$
Flavour symmetries	[19-25]	0
	[26]	0.02
	[27]	0.04
Sequential RH neutrino dominance	[28, 29]	0.1
+ Flavour symmetries	[30-32]	0.1
+ Type II see-saw upgrade	[33]	0.01 0.1
Texture zeros	[34]	0.07
	[35]	> 0.1
Perturbations of textures	[36]	$\lesssim 0.16$
	[37, 38]	$0.005 \ldots 0.1$

TABLE II: Selection of theoretical expectations for $|0.5 - \sin^2 \theta_{23}|$ at tree level. The numbers should be considered as order of magnitude statements.

S. Antusch, M. Huber, J. Kersten, T. Schwetz, W. Winter (hep-ph/0404268)

Sensitivity for Excluding Maximal Atmospheric Mixing I. Long Baseline Experiments

Sensitivity for Excluding Maximal Atmospheric Mixing II. Atmospheric Neutrino Oscillations

Gonzalez-Garcia, Maltoni, Smirnov, hep-ph/0408170

Expectation for Theta_13 for a natural neutrino mass hierarchy

28/01/2005

Compilation of Theoretical predictions for Theta_13

Reference	$\sin \theta_{13}$	$\sin^2 2\theta_{13}$
SO(10)		
Goh, Mohapatra, Ng [40]	0.18	0.13
Orbifold SO(10)		
Asaka, Buchmüller, Covi [41]	0.1	0.04
SO(10) + flavor symmetry		
Babu, Pati, Wilczek [42]	$5.5\cdot10^{-4}$	$1.2 \cdot 10^{-6}$
Blazek, Raby, Tobe [43]	0.05	0.01
Kitano, Mimura [44]	0.22	0.18
Albright, Barr [45]	0.014	$7.8 \cdot 10^{-4}$
Maekawa [46]	0.22	0.18
Ross, Velasco-Sevilla [47]	0.07	0.02
Chen, Mahanthappa [48]	0.15	0.09
Raby [49]	0.1	0.04
SO(10) + texture		
Buchmüller, Wyler [50]	0.1	0.04
Bando, Obara [51]	$0.01 \dots 0.06$	$4 \cdot 10^{-4} \dots 0.01$
Flavor symmetries		
Grimus, Lavoura [52, 53]	0	0
Grimus, Lavoura [52]	0.3	0.3
Babu, Ma, Valle [54]	0.14	0.08
Kuchimanchi, Mohapatra [55]	$0.08 \dots 0.4$	0.03 0.5
Ohlsson, Seidl [56]	$0.07 \dots 0.14$	$0.02 \ldots 0.08$
King, Ross [57]	0.2	0.15
Textures		
Honda, Kaneko, Tanimoto [58]	$0.08 \dots 0.20$	$0.03 \ldots 0.15$
Lebed, Martin [59]	0.1	0.04
Bando, Kaneko, Obara, Tanimoto [60]	$0.01 \dots 0.05$	$4 \cdot 10^{-4} \dots 0.01$
Ibarra, Ross [61]	0.2	0.15
3 imes 2 see-saw		
Appelquist, Piai, Shrock [62, 63]	0.05	0.01
Frampton, Glashow, Yanagida [64]	0.1	0.04
Mei, Xing [65] (normal hierarchy)	0.07	0.02
(inverted hierarchy)	> 0.006	$> 1.6 \cdot 10^{-4}$
Anarchy		
de Gouvêa, Murayama [66]	> 0.1	> 0.04
Renormalization group enhancement Mohapatra, Parida, Rajasekaran [67]	0.08 0.1	0.03 0.04

From hep-ex/0402041

Experimental prospects for Theta_13

APS study Albright et al, physics/0411123

Prospects for measuring CP Violation if $\delta_{CP} = 90^{\circ}$.

APS study Albright et al, physics/0411123

Quark-Lepton Complementarity?

Lepton mixings

Quark mixings

'Quark-lepton complementarity' clues to guark-lepton unification? Mohapatra, Frampton ('04)

This motivates measurements of neutrino mixing angles to at least the accuracy of the measured quark mixing angles

Summary and Conclusion

Recall the unanswered questions amenable to LBL experiments:

- How small is θ_{13} ?
- How "maximal" is θ_{23} ?
- No theoretical consensus accurate measurements would provide a good discriminator between models.
- Is there CP Violation in the neutrino sector? $\left. \right\}$ Probably yes, need a nufact or beta beam if $\sin^2 2\theta_{13} < 10^{-2}$.
- Is the mass hierarchy inverted or normal?

 \mathbb{R}^{1} Need very LBL \rightarrow matter effects.

Are accurate measurements of neutrino **YES!** oscillation parameters important to theorists?

How accurate? To at least the accuracy as quark mixing angles to test ideas about quark-lepton unification - maybe more accurate measurements possible since lepton parameters are not subject to QCD corrections.