Imperial College London

K. Long, 25 January, 2005

Neutrino Factory Physics

– headline tour

Contents

Motivation

Neutrino Factory concept

Sensitivity

Conclusions

Motivation: phenomenology

Motivation: phenomenology

Motivation: parameters

Mixing of three flavours of Dirac neutrino:

- Three mixing angles: θ_{23} , θ_{12} , θ_{13}
- CP phase: δ
- Mass differences: Δm_{23}^2 , Δm_{12}^2
- Two more CP phases for Majorana neutrino:
 Oscillation insensitive to Majorana phases

Neutrino Factory for *precision* neutrino measurements

- Sign of Δm_{23}^2
- Precision determination of θ₁₃
- Search for non-zero δ

Neutrino Factory: concept

H ⁻ linac Proton driver	Intense high-energy neutrino source derived from muon decay
Target and capture Phase rotation and bunching	 Key accelerator systems: Proton driver High-power target
lonisation cooling	 Ionisation cooling Rapid acceleration
Muon acceleration	n storage

Neutrino Factory: measurements

∆ m² ₂₃	sin²θ ₁₃		δ	
Neutrino Factor $\mu^- \rightarrow \nu_{\mu} + \nu_{e}$ $\mu^+ \rightarrow \nu_{\mu} + \nu_{e}$	Feature Beam Energy Neutri 1,000	 Features: Beam composition known Energy spectrum known Neutrino flux measured 1,000 times more intense 		
 High-energy Require 'track 	than c king' Disappea	than conventional beams $\mu^- \rightarrow e^- v_{\mu} \overline{v}_e$ Disappearance Appearance		
detector Long (~n × 10 baseline indic	D00 km) cated $ v_{\mu} \rightarrow v_{\mu} $	$\rightarrow e^+$ $\rightarrow \mu^-$	$ \begin{array}{c} \overline{v}_{e} \rightarrow \overline{v}_{\mu} \rightarrow \mu^{+} \\ \overline{v}_{e} \rightarrow \overline{v}_{\tau} \rightarrow \tau^{+} \\ \overline{v}_{\mu} \rightarrow v_{e} \rightarrow e^{-} \\ \overline{v}_{\mu} \rightarrow v_{\tau} \rightarrow \tau^{-} \end{array} $	

Neutrino detection:

- Assume 'conservative' detector:
 - Fiducial mass: 50 100 kTon
 - Event classification:
 - Charged-current electrons/positrons
 - Right-sign muons (disappearance measurements)
 - Wrong-sign muons (appearance measurements)
 - Events with no leptons (neutral current)

Example: magnetic calorimeters

$\Delta m_{23}^2 \qquad sin^2 \theta_{13} \qquad \delta$ ■ Right-sign muons: v_{μ} disappearance ■ Background at or below 1 in 10⁻⁵ – 10⁻⁴

 $sin^2\theta_{13}$

δ

• Measurement of sign of Δm_{23}^2

 Δm_{23}^2

- Wrong-sign muon events: $v_e \rightarrow v_{\mu}$
- Electron neutrino interactions with matter different from electron-antineutrino interactions
- Requires baseline in excess of 1000 km

 $sin^2\theta_{13}$

δ

θ₁₃: mixing of electron neutrinos with muon and tau neutrinos

Wrong-sign muon events: ν_e → ν_μ Background at the level of 10⁻⁶ − 10⁻⁵

 Δm^2_{23}

Determine parameters from fit:

- Include more than one data set
- Several parameters are determined in fit
- Leads to:

 Δm^2_{23}

- Correlations among the parameters
- Degenerate solutions (same χ² for >1 solutions)

Data sample:

Asymmetry:

$\Delta m_{23}^2 sin^2 \theta_{13}$

CP asymmetry significance in the absence of 'theoretical uncertainties'

δ

Need to determine θ₁₃, δ simultaneously
 Account for correlations and degeneracies

8.2

8

8.4

213

20

0

7.6

78

20

0

7.6

=732 + 3500

8

7.8

8.2

8.4

815

$sin^2\theta_{13}$

δ

Degeneracy:

 Δm^2_{23}

- Several classes:
 - **Continuous parameters:** θ_{13} , δ
 - Discrete parameters: sign(Δm_{23}^2), sign(tan($2\theta_{23}$))
- Include other channels or other experiments

Conclusions

Next generation super-beam experiments:

• First measurement of θ_{13}

Neutrino Factory allows:

- Precise measurements of oscillation parameters
- Most sensitive search for leptonic CP violation

Neutrino Factory alone:

- Measure θ_{13} ; potential to discover $\delta \neq 0$
- Can not resolve all degeneracies
 - Requires super beam or beta beam

Need for design studies:

- Need to understand sensitivities and limitations of each facility on equal footing
- Need to compare performance and cost
- Need for robust design studies of:
 - Beta beam
 - Neutrino Factory

So allow a consensus plan for an exciting future to emerge