## Long Baseline Neutrino Oscillation Projects

Alfons Weber 18 January 2004 RAL/CCLRC





#### Overview

#### Current status

- see S. King's talk
- global fits
- Experiments coming soon
  - MINOS
  - OPERA
  - IKARUS
- Experiments coming not so soon
  - T2K
  - NOvA

#### **Results of Global Fits**



# The MINOS Experiment



- NuMI beam to Soudan in MN (distance 735 km)
- Sagitta:10 km
- >1 km wide at destination







# CC Energy Analysis

 Select v<sub>µ</sub> charge current events

 $E_{\nu} = E_{\mu} + E_{h}$ range, B field calorimetric
Energy resolution:

 $\Delta p_{\mu} / p_{\mu} = 10\%$  $\Delta E_h / E_h = 60\% / \sqrt{E}$ 

- Compare energy spectrum in near and far detector
- Measure  $\Delta m^2$  and  $sin^2 2\theta$

CC energy distributions Ph2le, 10 kt.yr.



## **MINOS** Sensitivity



#### Muon Disappearance Measurement





#### CERN SPS

- E<sub>p</sub> = 400 GeV
- 4.8\*10<sup>13</sup> ppp
- cycle 6 27.6 sec
- 7.6\*10<sup>19</sup> pot/year

Experiments
 – OPERA
 – ICARUS







Loose cut to reject low momentum tracks

## OPERA: $\Delta m2$

| <u>90 % CL limits</u> *           | $\Delta m^2 (10^{-3} \mathrm{eV^2})$ |             |             |  |
|-----------------------------------|--------------------------------------|-------------|-------------|--|
|                                   | 1.5                                  | 3.2         | 5.0         |  |
| Upper limit                       | 2.1                                  | 3.8         | 5.6         |  |
| Lower limit<br>(U - L) / (2*True) | 0.8<br>41 %                          | 2.6<br>19 % | 4.3<br>12 % |  |
| $N_{\tau}$ / year                 | 0.82                                 | 2.82        | 3.66        |  |

\* assuming the observation of a number of events corresponding to those expected for the given  $\Delta m^2$ 

#### Probability to observe SuperK signal

| years | $P_{3\sigma}$ | $P_{4\sigma}$ |
|-------|---------------|---------------|
| 3     | 93%           | 83%           |
| 5     | 96%           | 91%           |

#### (mixing constrained by SuperK)



## ICARUS



- Physics Program
  - Nucleon Decay
  - Atmospheric Neutrinos
  - Solar Neutrinos
  - Beam Neutrinos
- Electronic bubble chamber





## The Status so far

#### Solar Neutrinos

• good measurement  $\theta_{12} \approx 30^{\circ}$  $\Delta m_{12}^{2} \approx 7 \times 10^{-5} \,\mathrm{eV}^{2}$ 

Atmospheric Neutrinos

 $V_{\mu} \rightarrow V_{\tau}$ 

 $V_e \rightarrow V_\mu$  or  $V_\tau$ 

- initial measurement
  - $\theta_{23} \approx 45^{\circ}$

 $\Delta m_{23}^2 \approx 2 \times 10^{-3} \,\mathrm{eV}^2$ 

- Precision measurement to follow soon
  - MINOS
- What is missing?

## The Missing Pieces

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & s_{13} \\ -c_{23}s_{12}e^{i\delta} - c_{12}s_{13}s_{23} & c_{12}c_{23}e^{i\delta} - s_{12}s_{13}s_{23} & c_{13}s_{23} \\ s_{23}s_{12}e^{i\delta} - c_{12}c_{23}s_{13} & -c_{12}s_{23}e^{i\delta} - c_{23}s_{12}s_{13} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

- One mixing angle largely unknown:  $\theta_{13}$ 
  - Small, only limits exist
  - Results in sub-dominant  $V_{\mu} \rightarrow V_{e}$  oscillations
- CP violating phase δ
  - Possible large CP violation in lepton sector
  - May give hints towards GUT
  - Why are we here?
    - matter vs. anti-matter asymmetry

## Sub-Dominant Oscillations

#### Some Math:

$$P(V_{\mu} \rightarrow V_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$$

$$P_{1} = \sin^{2} \theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2} \frac{B_{\pm}L}{2}$$

$$P_{2} = \cos^{2} \theta_{23} \sin^{2} \theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \frac{AL}{2}$$

$$P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = J \sin \delta \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

A. Cervera et al., Nuclear Physics B 579 (2000) 17 – 55, expansion to second order in  $\theta_{13}, \frac{\Delta_{12}}{\Delta_{23}}, \frac{\Delta_{12}}{A}, \Delta_{12}L$ 



#### Next generation LBL experiments in Japan <sup>18</sup> "T2K neutrino project"

Jan 2005

| Super K<br>Gifu<br>Kyste<br>Osaka | amiokande 295km<br>Japan<br>Tokyo in<br>Kan<br>Yokohama | Sendki<br>JAERI<br>(Tokai)<br>EK | <ul> <li>Base</li> <li>Energination</li> <li>Sens</li> <li>·Θ<sub>1</sub></li> </ul> | line ~295 km<br>gy ~ 1 GeV<br>itive to<br>andδ                                                             |          |
|-----------------------------------|---------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|
| (c) 2000,2011                     | Beam power                                              | Far de                           | etector                                                                              | Physics                                                                                                    |          |
| 1st phase                         | 0.75MW                                                  | Super<br>Kamiokande(50kt)        |                                                                                      | disappearance $V_{\mu} \rightarrow V_{\mu}$<br>appearance $V_{\mu} \rightarrow V_{\mu}$<br>NC measurements | 'X<br>'e |
| 2nd phase                         | ~4MW                                                    | Hyper<br>Kamiokande(1Mt)         |                                                                                      | CP violation<br>Proton decay                                                                               |          |

#### Sensitivities in first phase(5yrs)

Jan 2005



## **NOvA: Potential Sites**



## NOvA (TASD)

#### Totally Active Scintillator Detector



No absorber

### NOvA (TASD) Performance

$$v_e + n \rightarrow p + e^- + \pi^0$$
  
 $E_v = 1.65 \ GeV$ 



Signal efficiency 32% (18% baseline) signal/background 7.7 (4.6 baseline) signal/sqrt(bg.) 26 (24.5 baseline)

Plane Number

#### **Physics Reach**



23



#### Comparison





## Mass Hierarchy (sign of $\Delta m^2_{13}$ )

- Combine
  - T2K
  - NOvA
- Use right baseline to determine sign of Δm<sup>2</sup><sub>13</sub>
   best, if E/L is the same!



### **CP** violation & Mass Hierarchy



2 σ Resolution of the Mass Hierarchy

#### Summary

#### In LBL Experiments

- Neutrino Oscillation well established
- Next generation of detectors
  - precision measurements of some parameters
- New generation of experiments
  - might reveal unknown neutrino parameters
    - Masses & hierarchy
    - Angles
    - CP phase

### KamLAND



## Measured Energy Spectrum







## Super-Kamiokande

#### SK-1 1996 - 2001

- 22.5 kton fiducial mass (2m from wall)
- 11146 50-cm photomultiplier tubes
- 40% photocathode coverage
- 1885 20-cm pmts in outer detector

#### SK-2 January 2003 - October 2005

- 5182 PMTs, mostly recovered from accident
- ~19% coverage with acrylic shields →
- outer detector fully restored
- K2K beam resumed

#### SK-3 March 2006 +

- original coverage to be restored
- T2K off-axis beam from J-PARC

## Zenith Angle Distribution



## SuperKamiokande Results



#### Jan 2005

## K2K Experiment



(monitor the beam center)

Signal of v oscillation at K2K

- Reduction of  $v_{\mu}$  events
- Distortion of  $v_{\mu}$  energy spectrum

### K2K Results

