Absolute Neutrino Mass Measurements

Kai Zuber Univ. of Oxford/ Univ. of Sussex

18. Jan. 2005

Contents

• Beta decay

- Double beta decay
- Cosmological neutrino
 - mass bounds
- Summary and conclusions

Oscillation evidences

LSND $\sin^2 2\theta = 10^{-1} \cdot 10^{-3}$, $\Delta m^2 = 0.1 \cdot 6 \text{ eV}^2$

Atmospheric

 $\sin^2 2\theta = 1.00$, $\Delta m^2 = 2.1 \times 10^{-3} \text{ eV}^2$

Solar + reactors

 $\sin^2 2\theta = 0.81$, $\Delta m^2 = 8.2 \times 10^{-5} \ eV^2$

If all three are correct... we need more (sterile ones)

18. Jan. 2005

Models of neutrino masses

18. Jan. 2005

Neutrino mass schemes

"normal" mass hierarchy m₁<m₂<m₃

Current neutrino mass limits

Direct kinematical limits

³H decay: $m_{ve} < 2.3 \text{ eV}$ Mainz, Troitzk Pion decay: $m_{v\mu} < 190 \text{ keV}$ PSI Tau decay: $m_{v\tau} < 18.2 \text{ MeV}$ LEP (Aleph)

KATRIN-The ultimate beta-decay experiment

KATRIN sensitivity & discovery potential

Alternative approaches I

N(E)

$$^{187}\text{Re} \rightarrow ^{187}\text{Os} + e^- + \overline{\nu}_e$$

$$n(Q-\Delta E) \propto \left(\frac{\Delta E}{Q}\right)^3$$

μ-calorimeters working at mK

 $m_v^2 = -112 \pm 207 \pm 90 eV^2$ $m_v < 15 eV (90\% CL)$ future: proposal for a new calorimeter expt. with ~2-3 eV sensitivity foreseen 2007 (?)

Q = $2465.3 \pm 0.5_{stat} \pm 1.6_{syst} eV$ (8751 h*mg, NIMA520, 2004) = $2466.1 \pm 0.8_{stat} \pm 1.5_{syst} eV$ (4485 h*mg, PRL91,2003) 18. Jan. 2005 Workshop on beta beams, RAL

Alternative approaches II

 $^{115}In \rightarrow ^{115}Sn + e^- + \overline{\nu}_e$

Observed line at 497.4 keV within test measurements for LENS

If real a Q-value for beta decay of $2 \pm 4 \text{ keV}$

Origin of line has to be verified

C. M. Cattadori et al, nucl-ex/0407016

Contents

Beta decay
Double beta decay
Cosmological neutrino mass bounds

 Summary and conclusions

Double beta decay

• $(A,Z) \rightarrow (A,Z+2) + 2 e^{-} + 2\overline{v}_{e}$ $2\nu\beta\beta$ • $(A,Z) \rightarrow (A,Z+2) + 2 e^{-}$ $0\nu\beta\beta$

In nature there are 35 isotopes

2vββ: Seen in 10 isotopes, important for nuclear physics input 0vββ: Only possible if neutrinos are Majorana particles

18. Jan. 2005

Spectral shapes

$0\nu\beta\beta$: Peak at Q-value of nuclear transition

Measured quantity: Half-life

Dependencies (BG limited) $T_{1/2} \propto a \cdot \epsilon (M \cdot t/\Delta E \cdot B)^{1/2}$

link to neutrino mass

 $1 / T_{1/2} = PS * NME^2 * (m_v / m_e)^2$

Sum energy spectrum of both electrons

18. Jan. 2005

3 Flavour oscillations (PMNS) Analogous to CKM matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \Rightarrow \frac{m_{i}^{2}}{2E_{\nu}} \Rightarrow \begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$$

$$U = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\beta_{1}} & 0 \\ 0 & 0 & e^{i\beta_{2}} \end{pmatrix}$$

solar If $\sin \theta_{13} \neq 0 \rightarrow CP$ -violation atmospheric

Majorana:
$$U = U_{PMNS} diag(1, e^{i\alpha}, e^{i\beta})$$

18. Jan. 2005

Physical quantities

Experimental observable: Half-life Double beta decay: Effective Majorana neutrino mass

$$\left\langle m_{\nu}\right\rangle \equiv m_{ee} = \left|\sum_{k} U_{ek}^{2} m_{k}\right| = \left|\sum_{k} \left|U_{ek}\right|^{2} e^{i\alpha_{ek}} m_{k}\right|$$

relative CP phases = ± 1

Beta decay

$$m_e = \Sigma / U_{ek} / 2 m_k$$

18. Jan. 2005

Phase space

$0\nu\beta\beta$ decay rate scales with Q ⁵ $2\nu\beta\beta$ decay rate scales with O ¹¹						
Isotope	Q-value (keV)	Nat. abund. (%)	$(PS \ 0v)^{-1}$ (yrs)	(PS 2v) ⁻¹ (yrs)		
Ca 48	4271	0.187	4.10E24	2.52E16		
Ge 76	2039	7.8	4.09E25	7.66E18		
Se 82	2995	9.2	9.27E24	2.30E17		
Zr 96	3350	2.8	4.46E24	5.19E16		
Mo 100	3034	9.6	5.70E24	1.06E17		
Pd 110	2013	11.8	1.86E25	2.51E18		
Cd 116	2809	7.5	5.28E24	1.25E17		
Sn 124	2288	5.64	9.48E24	5.93E17		
Te 130	2529	34.5	5.89E24	2.08E17		
Xe 136	2479	8.9	5.52E24	2.07E17		
Nd 150	3367	5.6	1.25E24	8.41E15		

18. Jan. 2005

Heidelberg -Moscow

 $T_{1/2} > 1.9 \text{ x } 10^{25} \text{ yr } (90\% \text{ CL})$

H.V. Klapdor-Kleingrothaus et al, Europ. Phys. J. A 12, 147 (2001)

Subgroup of collaboration

 $\begin{array}{c} T_{1/2} = 0.6 - 8.4 \text{ x } 10^{25} \text{ yr} \\ \hline m = 0.17 - 0.63 \text{ eV} \end{array}$

H.V. Klapdor-Kleingrothaus et al, Phys. Lett. B 586, 198 (2004)

18. Jan. 2005

Workshop on beta beams, RAL

Energy, key

Evidence?

m < 0.35 eV

If peak is real...

n

p

P

e

- 1.) Go out and check (GERDA, MAJORANA)
 - Is peak something specific to Ge? Uncertainties in the nuclear matrix elements?
 - \rightarrow Check with a different isotope
- Physics mechanism at work ?
 → Tracking
 2.) NEMO, COBRA

Running experiments

CUORICINO: cryogenic bolometers 40.7 kg TeO₂

 $T_{1/2} > 7.5 \times 10^{23} \text{ yr} (90\% \text{ CL})$ E. Fiorini, Neutrino 2004

 $T_{1/2} > 3.1 \times 10^{23} \text{ yr (90\% CL)}$ 18. Jan. 2005 Workshop on beta beams, RAL

DBD Q-value

2000

MO100, EE-internal

2500

E1+E2. keV

NEMO-3: TPC

COBRA

Use CdZnTe semiconductors

Only UK lead, UK dominated experiment

already 5 world best limits

K. Zuber, Phys. Lett. B 519,1 (2001)

"Solid state TPC"

4 detectors running at LNGS, upgrade to 64 by spring 2005

Cobra - The people

C. Gößling, H. Kiel, D. Münstermann, S. Oehl, T. Villett University of Dortmund

T. Leigertwood, D. McKechan, C. Reeve, J. Wilson, K. Zuber University of Sussex P.F. Harrison, Y. Ramachers, D. Stewart University of Warwick A. Boston, P. Booth, P. Nolan **University of Liverpool** B. Fulton, R. Wadsworth University of York T. Bloxham, M. Freer University of Birmingham **Rutherford Appleton Laboratory** M. Junker Laboratori Nazionali del Gran Sasso

Workshop on beta beams, RAL

18. Jan. 2005

Next step - the 2x2 prototype Installation of setup at Gran Sasso Underground Laboratory

4 naked 1cm³ CdZnTe

$0\nu\beta\beta$ Experimental Situation 2 main experimental approac Active Source Passive Source Best $0v2\beta$ results involve active source experiments $T_{1/2}^{0\nu}(y)$ **Experiment** Isotope <m,>(eV) > 9.5 × 10²¹ (76%) You Ke et al. 1998 48Ca < 8.3 > 1.9 × 10²⁵ 76**Ge** Klapdor-Kleingrothaus 2001 Aalseth et al 2002 ⁸²Se > 1.3 x 10²³ < 1.5-3.1 Arnold et al. 2004 100**Mo** >3.1 × 10²³ < 0.33-0.84 Arnold et al. 2004 116**Cd** > 1 × 10²³ < 2.2 Danevich et al. 2000 130/128Te* $(3.52 \pm 0.11) \times 10^{-4}$ < 1.1 - 1.5 Bernatowicz et al. 1993 128**Te*** < 1.1 - 1.5 Bernatowicz et al. 1993 > 7.7 × 10²⁴ 130**Te** > 1.8 × 10²⁴ < 0.5 - 1.1 Arnaboldi et al. 2005 136**Xe** < 1.8 - 5.2 > 4.4 × 10²³ Luescher et al. 1998 136**Xe** > 7 × 10²³ < 1.4 - 4.1Belli et al. 2001 Workshop on beta beams, RAL > 1.2 × 10²¹ De Silva et al: 20057 < 3 160**Gd** Danevich et al. 2001 > 1 3 × 1021 < 26

Back of the envelope

O.Cremonesi, v 2002

Future projects

Experiment	Author	Isotope	Detector description	Т ^{5у} _{1/2} (у)	<m<sub>v>*</m<sub>
COBRA	Zuber 2001	¹¹⁶ Cd	10 kg CdTe semiconductors	1 x 10 ²⁴	0.71
CUORICINO	Arnaboldi et al 2001	¹³⁰ Te	40 kg of TeO ₂ bolometers	1.5 x 10 ²⁵	0.19
NEMO3	Sarazin et al 2000	¹⁰⁰ Mo	10 kg of bb(0n) isotopes (7 kg Mo) with tracking	4 x 10 ²⁴	0.56
CUORE	Arnaboldi et al. 2001	¹³⁰ Te	760 kg of TeO ₂ bolometers	7 x 10 ²⁶	0.027
EXO	Danevich et al 2000	¹³⁶ Xe	1 t enriched Xe TPC	8 x 10 ²⁶	0.052
GEM	Zdesenko et al 2001	⁷⁶ Ge	1 t enriched Ge diodes in liquid nitrogen + water shield	7 x 10 ²⁷	0.018
GENIUS	Klapdor- Kleingrothaus et al 2001	⁷⁶ Ge	1 t enriched Ge diodes in liquid nitrogen	1 x 10 ²⁸	0.015
MAJORANA	Aalseth et al 2002	⁷⁶ Ge	0.5 t enriched Ge segmented diodes	4 x 10 ²⁷	0.025
DCBA	Ishihara et al 2000	¹⁵⁰ Nd	20 kg enriched Nd layers with tracking	2 x 10 ²⁵	0.035
CAMEO	Bellini et al 2001	¹¹⁶ Cd	1 t CdWO ₄ crystals in liquid scintillator	> 10 ²⁶	0.069
CANDLES	Kishimoto et al	⁴⁸ Ca	several tons of CaF ₂ crystal in liquid scintillator	1 x 10 ²⁶	
GSO	Danevich 2001	¹⁶⁰ Gd	2 t Gd ₂ SiO ₅ :Ce cristal scintillator in liquid scintillator	2 x 10 ²⁶	0.065
MOON	Ejiri et al 2000	¹⁰⁰ Mo	34 t natural Mo sheets between plastic scintillator	1 x 10 ²⁷	0.036
Хе	Caccianiga et al 2001	¹³⁶ Xe	1.56 t of enriched Xe in liquid scintillator	5 x 10 ²⁶	0.066
XMASS	Moriyama et al 2001	¹³⁶ Xe	10 t of liquid Xe	3 x 10 ²⁶	0.086

* Staudt, Muto, Klapdor-Kleingrothaus Europh. Lett 13 (1990) 31

Future - Ge approaches

MAJORANA

500 kg of enriched Ge detectors

GERDA

Segmentation and pulse shape discrimination Naked enriched Ge-crystals in LAr with lead shield

20 kg enriched Ge-detectors at hand (former HD-MO and IGEX)

18. Jan. 2005

Tracking and scintillation

New feature:

 $^{136}Xe \rightarrow ^{136}Ba^{++}e^{-}e^{-}$ final state can be identified using optical spectroscopy (M.Moe PRC44 (1991) 931)

200 kg enriched Xe prototype under construction at WIPP

18. Jan. 2005

\$L=2 processes

Im general 9 mass terme

• μe-conversion on nuclei

•
$$\nu_{\mu}N \rightarrow \mu^{-}\mu^{+}\mu^{+}X$$

M. Flanz, W. Rodejohann, K. Zuber, Eur. Phys. J. C 16, 453 (2001)

W. Rodejohann, K. Zuber, Phys. Rev. D 63, 054031 (2001)

• $K^+ \rightarrow \pi^- \mu^+ \mu^+$

K. Zuber, Phys. Lett. B 479,33 (2000)

•
$$e^+ p \rightarrow \overline{v}_e \mu^+(\tau^+) \mu^+(\tau^+) X$$

M. Flanz, W. Rodejohann, K. Zuber, Phys. Lett. B 473, 324 (2000) W. Rodejohann, K. Zuber, Phys. Rev. D 62, 094017 (2000)

$$\left\langle m_{\alpha\beta} \right\rangle = \left| \sum_{k} U_{\alpha k} U_{\beta k} m_{k} \right| = \left| \sum_{k} \left| U_{\alpha k} U_{\beta k} \right| m_{k} \eta_{k}^{CP} \right|$$

limits on <m_{ഇറി}> (in GeV)

3.5 10-10	1.7 (8.2) 10-2	8.4 10 ³
	500	8.7 10 ³
		2.0 104

Event candidates

H1 charged current event

NOMAD Trimuon event

Contents

- Beta decay
 Double beta decay
 Cosmological neutrino mass bounds
- Summary and conclusions

Mass bound model dependent, currently done within ΛCDM

18. Jan. 2005

Neutrinos mass density

18. Jan. 2005

Density fluctuations versus scale

(free after Coleridge, 1798)

Structure, structure everywhere $C(\theta) = \langle \Delta T(n) \Delta T(n') \rangle$

Expansion in spherical harmonics Legendre polynomials

18. Jan. 2005

Large scale structure - Description

Measure autocorrelation function

 $\xi(r) = \left\langle \delta(x)\delta(x+r) \right\rangle$

Fourier transformed $\xi(r) = \frac{V}{(2\pi)^3} \int |\delta_k|^2 e^{-ikr} d^3k$ Power spectrum $\langle |\delta_k|^2 \rangle \propto k^n$

Inflation predicts: n=1 (Harrison - Zeldovich spectrum)

The VIRGO Collaboration 1996

Workshop on beta beams, RAL

18. Jan. 2005

Neutrinos and the CMB

The CMB alone in NOT sensitive to massive neutrinos.

The WMAP result (Spergel at al. 2003) of $m_v < 0.69 \text{ eV}$ (95% CL) is based on WMAP+2dF+Ly- α

* 2dF is sensitive to $\Omega_{\rm v}/\Omega_{\rm m}$ * WMAP constrains $\Omega_{\rm m}$ (and other parameters)

Neutrinos in cosmology

M. Tegmark

CMB and Large scale structure

CMB necessary to fix other cosmological parameters Neutrinos smear out small density fluctuations, change in power spectrum $\frac{\Delta P_m(k)}{P_m(k)} \approx -8 \frac{\Omega_{\nu}}{\Omega_m}$ W. Hu, D. Eisenstein, M.Tegmark, Phys. Rev. Lett. 80, 5255 (1998)

18. Jan. 2005

Combined SDSS and WMAP data M. Tegmark et al., Phys. Rev. D 69, 103501 (2003)

Neutrino mass from cosmology O. Lahav, Neutrino 2004

Data	Authors	$m_v = \Sigma m_i$
2dFGRS	Elgaroy et al. 02	< 1.8 eV
WMAP+2dF+	Spergel et al. 03	< 0.7 eV
WMAP+2dF	Hannestad 03	< 1.0 eV
SDSS+WMAP	Tegmark et al. 04	< 1.7 eV
WMAP+2dF+	Crotty et al. 04	< 1.0 eV
SDSS		
Clusters +WMAP	Allen et al. 04	0.56 ^{+0.30} -0.26 eV

All upper limits 95% CL, but different assumed priors !

Conclusion

Beta decay: Independent of neutrino character $\mathbf{m}_{\mathbf{e}} = \sum |\mathbf{U}_{\mathbf{e}\mathbf{k}}|^2 \mathbf{m}_{\mathbf{k}}$ Double beta decay: Requires Majorana neutrinos $\mathbf{m}_{ee} = |\Sigma \mathbf{U}_{ek}^2 \mathbf{m}_{k}|$ Note: U_{PMNS} + 2 Majorana phases Cosmology: Requires a cosmological model $\Omega_{\nu}h^2 = \frac{m_{\nu,tot}}{94eV}$

Currently all of them give limits around 1 eV, future very exciting, because large improvements can be expected

18. Jan. 2005