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* Discovery of neutrino oscillations led to strong interest
in providing intense beams of accelerator-produced

neutrinos
— such a facility may be able to observe CP violation in the lepton sector
o the reason we're all here

 Two ideas have been proposed for producing the

required neutrino beams
— a Neutrino Factory based on the decays of a stored muon beam

— a Beta Beam facility based on decays of a stored beam of beta-
unstable ions

* Both approaches are challenging!
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’\|\ Physics Context

BERKELEY LaB

* Neutrino Factory beam properties

Sev 50%177 + 50% _
ILl _)e VeV,u:> OVe OV,U Pr'OdLlces hlgh
ﬂ+—>e+ve17ﬂ:>50%ve+50%17# energy neutrinos

* Beta beam properties

—_6 6] i + o
He > %Li+e + v, Produces low
— 18Ne — 18F + e* + v, energy neutrinos

- Decay kinematics well known
— minimal hadronic uncertainties in the spectrum and flux

- Electron neutrinos are most favorable to do the science

— v, — v, oscillations give easily detectable "wrong-sign” p
odo not get v, from “conventional” neutrino beam line (1 — p + v))
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’\|\‘ Neutrino Factory T

BERKELEY LaB

* Neutrino Factory comprises these sections
— Proton Driver
o primary beam on production target 1-4 MW
— Target, Capture, and Decay Proton

Source
ocreate n; decay into p = MERIT
— Bunching and Phase Rotation Hg-Jet Target
o reduce AE of bunch Decay V
. Channel A
— Cooling 8
o reduce transverse emittance Buncher
— MICE Linear

. Cooler
— Acceleration

0130 MeV — 20-40 GeV
with RLAs or FFAGs
— Decay Ring
o store for 500 turns; U.S. design (schematic)
long straight(s)

Pre-Accelerator
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- Baseline Beta Beam
facility comprises these
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sections — Acceleration
— Proton Driver olinac, RCS, PS, SPS
o SPL (4 GeV) — Decay Ring
— ISOL Target o 7000 m; 2500 m straight

o spallation neutrons or
direct protons

— Ton Source
o pulsed ECR

Baseline concept assumes
CERN PS, SPS

Use of Tevatron also RCS
being considered
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Technical Challenges-NF
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* Muons created as tertiary beam (p > n — p)
— low production rate
oneed target that can tolerate multi-MW beam
— large energy spread and transverse phase space
oneed emittance cooling
o high-acceptance acceleration system and decay ring

* Muons have short lifetime (2.2 us at rest)
— puts premium on rapid beam manipulations
o high-gradient RF cavities (in magnetic field for cooling)
o presently untested ionization cooling technique
o fast acceleration system
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Tonization Cooling (1) T

- Ionization cooling analogous to familiar SR

damping process in electron storage rings
— energy loss (SR or d£/dx) reduces p,, p,, p,
— energy gain (RF cavities) restores only p,
— repeating this reduces p, /p,
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Ionization Cooling (2) bi4

* There is also a heating term
— for SR it is quantum excitation
— for ionization cooling it is multiple scattering

- Balance between heating and cooling gives equilibr'ium
emittance

den _ 1 |dE u| ey ,BL(O 014 GCV)
ds 132 ds E/l 218 E,um,uXO
Cooling Heating
£,(0.014GeVYy
Ex,N,equil. —
dE
2hmuXof > ds

— prefer low B, (strong focusing), large X; and dE/ds (H, is best)
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BERKELEY LaB

* Desired proton intensity for Neutrino Factory is 4 MW
— e.g., 2.5 x 105 p/s at 10 GeV or 5 x 10!3 p/pulse at 50 Hz

» Desired bunch length is 1-3 ns to minimize intensity loss
— not easily done at high intensity and moderate energy

0.18_- Acceptance after cooling vs. proton bunch length
1 o~
0.16 4 \desngn value
o " s Sty 20 Pulse structure is also
N 0.12—_ 24 GeV protons on Hg |mpor.-|-an1-_1-arge1- 'ssue
\_ff 0.10
0.08 ] .\.
0.06—- \_
1 \I
0.04
o 10 2 3 40 50

ot [ns]
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* Favored target concept based on Hg jet in 20-T solenoid

— jet velocity of 20 m/s establishes "new” target each beam pulse
MERCURY JET@ 100 MRAD
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- Cooling channel requires high-gradient RF in a strong

magnetic field

— 805 MHz experiments indicate substantial degradation of gradient in such
conditions
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BERKELEY LaB

* Production of the required ion species at the required
intensity
— requires production, transport to ion source, ionization, bunching

o target’'s ability to accommodate primary beam is sometimes limited to a
few hundred kW

— looks okay for ®He but !8Ne is presently estimated at about 4% of
desired intensity level

o higher Z atoms are produced in multiple charge states, with the peak at
25-30% of the total intensity

Nominal production rate [ions/s] Required production rate [lons/s] Missing factor
6He 2 x 10 2 x 108 1
18Ne 8 x 10'! 1.9 x 1013 24
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* RF manipulations in transfers
— ion source > RCS —» PS — SPS — decay ring
— process is not 100% efficient
obeam losses represent vacuum challenge in PS
- optimized lattice with collimation system could improve vacuum x100

, , , . Pressure degrades to 75 ntorr
Predicted ¢Li losses in PS lattice from ¢He losses

- JLMMWW
\\(/] i F
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* RF stacking in decay ring
— need to stack beam in decay ring to get acceptable decay rate

cafter 15-20 merges, about 50% of the beam is pushed outside the
acceptance

— need substantial momentum collimation scheme
obeam losses represent 150 kW average power load on collimators

- peak load during bunch compression process (few 100 ms) will be at
MW level

BERKELEY LaB

Predicted ®He losses in decay ring
6He

Decay losses also an issue:

SC dipoles require 16 cm aperture %
and suffer 210 W/m heat load ﬁ

Injected/merged
4—
pajewl|oo
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NF R&D

* R&D program has three main thrusts
— simulation and theory (ongoing effort as part of ISS)
— development of high-power target technology
— development of cooling channel and rapid acceleration technology

* Recent simulation effort has focused on simplifying NF

design to reduce costs
— replaced induction linacs with RF bunching and phase rotation scheme
o this permitted simultaneous use of muons of both signs
— improved acceleration system (RLAs — non-scaling FFAGs)
olarger acceptance 15« mm-rad —» 30n mm-rad
— increased downstream acceptance permitted simplified cooling channel
- fewer solenoids, fewer RF cavities, simpler absorbers (LH, — LiH)

* Together, improvements doubled intensity (2 signs) and
reduced cost of facility by 35%
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- Disruption at moderate intensity (4 Tp) demonstrated in
BNL E951

— no solenoidal field

* What happens at higher intensity and with strong
solenoid? (MERIT)
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BERKELEY LaB

NF RF R&D (1)
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* Testing pressurized version of button cavity
— use high-pressure H, gas to limit breakdown

Breakdown Voltage
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BERKELEY LaB
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* Initial tests of 201 MHz prototype cavity are under way

— fabricated by collaboration of LBNL, Jlab, and U-Mississippi
— processed as if a superconducting cavity (electropolished)

» Cavity reached design gradient of 16 MV/m rapidly

S A
B ‘...La- b o

42-cm curved Be window
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* NuFact-J group has now built and commissioned
world's first 150 MeV proton FFAG ring

— experimental results in good agreement with design predictions
o fast cycling (100 Hz) demonstrated

RF cavity
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* Beta Beam work to date mostly “"paper studies”
— funded for system design, not hardware development

* New concept for production proposed by C. Rubbia et al.
— based on ionization “cooling” of ions to maintain equilibrium emittance
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» Experimentally demonstrated key bunch merging technique
in PS

Ingredients

— h=8 and h=16 systems of PS.
— Phase and voltage variations.

AN
& -

S. Hancock, M. Benedikt and J-L.Vallet, — °
A proof of principle of asymmetric bunch
pair merging, AB-Note-2003-080 MD
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’N System Tests-MICE (1)

BERKELEY LaB

Muon Ionization Cooling Experiment

FIRST BEAM IN OCTOBER 2007

Demonstrate feasibility and performance R {{Eﬁ 3= :
of a section of cooling channel by 2010 il | E
" r.- 'IF' ;I

e

v - Final PLD:
-_ r TOF

"'-" & Calorimeter

1

Approved at RAL{UIC]
First beam: 10-2007

(~10%)
m, liguid H RF

Funded in: UK,CH,It, JP,NL,US
Further requests: JP UK, US FRC..

ToF |
Single-u beam ~ -

~200 MeV/c u& L

P

% M N
® @

antillating-fiber
tracker

Liguid-hydrogen
absorbers

Prototyping:

200MHz RF cavity
with beryllium windows
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* MICE channel at RAL will be built in steps to ensure complete
understanding and control of systematic errors

Ll"‘l“l’_\f I STEP I 15 September 2007
|1
_'II::. [ .ll STEP I 15 November 2007

e[ ] .
——i—__ " T T# STEP 11 Winter 2008
] B el
_.|I<. f; :11 I STEP 1V Fall 2008
.—--

Empe————n
e mmmt omen A
O=————=gmm __._. Spring 2009
STEP VI

~||<i:::;§} ;@ i-m=—1
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BERKELEY LaB

* MERIT experiment will test Hg jet in 15-T solenoid
— 24 GeV proton beam from CERN PS
o scheduled Spring 2007

L. BT g 15-T solenoid during tests at MIT
| @) Bt
efl @ | Hg Supply ) .
= U Hg delivery and containment system
a under construction at ORNL
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Summar'y m‘
Substan‘hal progress being made toward design of

accelerator-based neutrino facilities to study CP violation
in the lepton sector

6

* Work extending state-of-the-art in accelerator science

— high-power targets, new cooling techniques, ion source development, rapid
acceleration techniques,...

* Work shown here represents efforts in EU, Japan, U.S.
— carried out in coordinated fashion internationally
oby choice, not dictated externally

* Thanks to Mats Lindroos and Andreas Jansson for sharing
their expertise on Beta Beams
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Paper studies alone
are not enough

We need to build and
test things!

“I guess there’ll always be a gap between
science and technology.”
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