

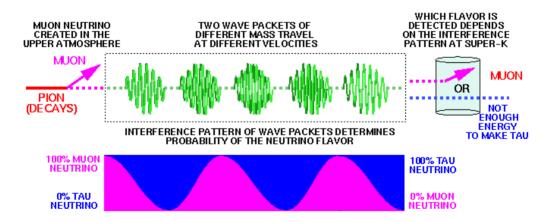
A BASELINE BETA-BEAM

Mats Lindroos
AB Department, CERN

on behalf of the Beta-beam Study Group

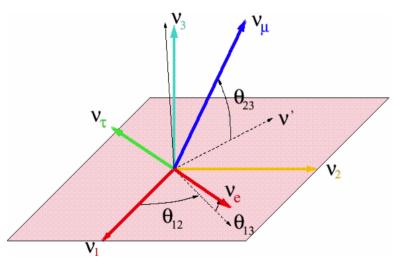
http://cern.ch/beta-beam/

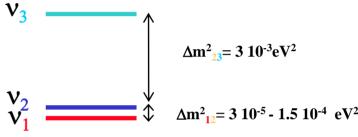
Outline


- Beta-beam baseline design
 - A baseline scenario, ion choice, main parameters
 - Ion production
 - Decay ring design issues
- Ongoing work and recent results
 - Asymmetric bunch merging for stacking in the decay ring
 - Decay ring optics design & injection
- Future R&D within EURISOL
 - The Beta-beam Task
- Conclusions

Neutrinos

- A mass less particle predicted by Pauli to explain the shape of the beta spectrum
- Exists in at least three flavors (e, μ , τ)
- Could have a small mass which could significantly contribute to the mass of the universe
- The mass could be made up of a combination of mass states
 - If so, the neutrino could "oscillate" between different flavors as it travel along in space





Neutrino oscillations

• Three neutrino mass states (1,2,3) and three neutrino flavors (e,μ,τ)

 V_1 $\Delta m_{12}^2 = 3 \cdot 10^{-5} - 1.5 \cdot 10^{-4} \text{ eV}$

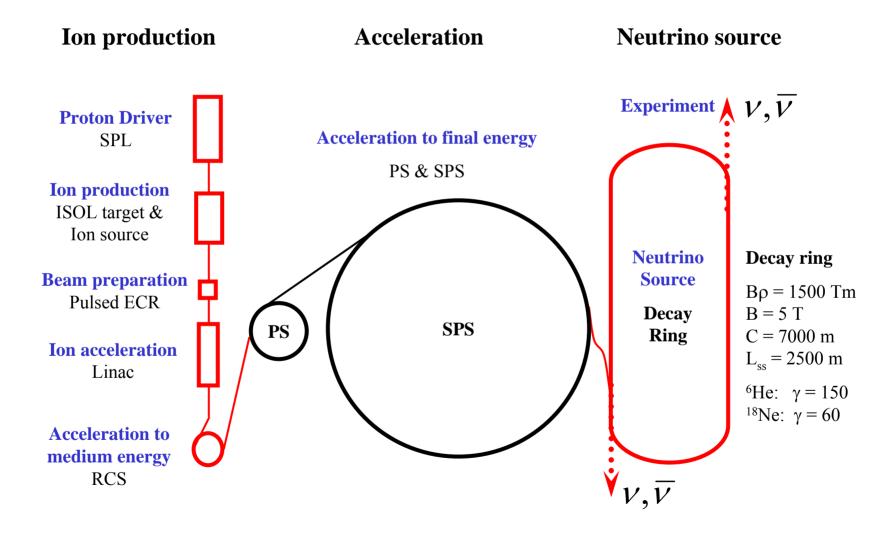
$$\theta_{23}$$
 (atmospheric) = 45°, θ_{12} (solar) = 30°, θ_{13} (Chooz) < 13° v_3 ______

$$\mathbf{U_{MNS}}: \left(egin{array}{cccc} \sim rac{\sqrt{2}}{2} & \sim -rac{\sqrt{2}}{2} & \sin heta_{13} \ e^{ioldsymbol{\delta}} \ \sim rac{1}{2} & \sim rac{1}{2} & \sim -rac{\sqrt{2}}{2} \ \sim rac{1}{2} & \sim rac{1}{2} & \sim rac{\sqrt{2}}{2} \end{array}
ight)$$

Unknown or poorly known even after approved program: θ_{13} , phase δ , sign of Δm_{13}

OR?

Introduction to beta-beams



- Beta-beam proposal by Piero Zucchelli
 - A novel concept for a neutrino factory: the beta-beam, Phys. Let. B, 532 (2002) 166-172.
- AIM: production of a pure beam of electron neutrinos (or antineutrinos) through the beta decay of radioactive ions circulating in a high-energy (γ ~100) storage ring.
- Baseline scenario
 - Avoid anything that requires a "technology jump" which would cost time and money (and be risky).
 - Make maximum use of the existing infrastructure.

Beta-beam baseline design

Main parameters (1)

Factors influencing ion choice

- Need to produce reasonable amounts of ions.
- Noble gases preferred simple diffusion out of target, gaseous at room temperature.
- Not too short half-life to get reasonable intensities.
- Not too long half-life as otherwise no decay at high energy.
- Avoid potentially dangerous and long-lived decay products.

Best compromise

- Helium-6 to produce antineutrinos: ${}_{2}^{6}He \rightarrow {}_{3}^{6}Li\ e^{-}\overline{V}$

Average $E_{cms} = 1.937 \text{ MeV}$

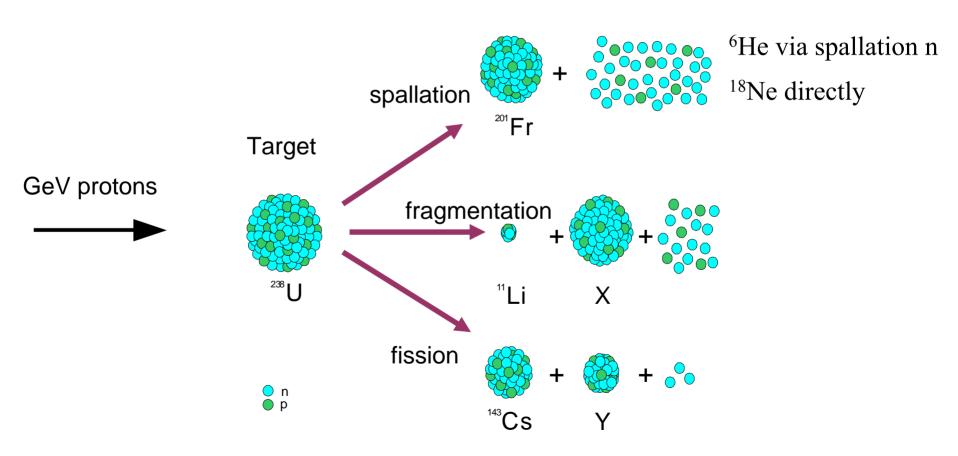
- Neon-18 to produce neutrinos: ${}^{18}_{10}Ne \rightarrow {}^{18}_{9}F \ e^+ v$

Average $E_{cms} = 1.86 \text{ MeV}$

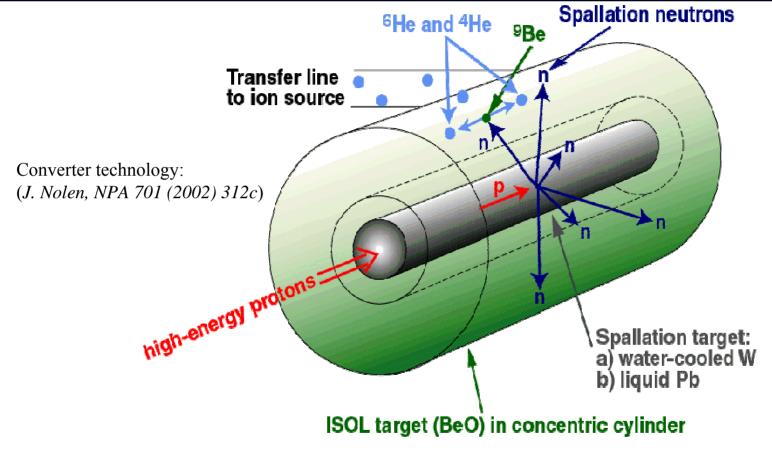
FLUX

- The Design Study is aiming for:
 - A beta-beam facility that will run for a "normalized" year of 10⁷ seconds
 - An integrated flux of 10 10^{18} anti-neutrinos ($^6{He}$) and 5 10^{18} neutrinos ($^{18}{Ne}$) in ten years running at $_{\gamma}$ =100

with an Ion production in the target to the ECR source:


- 6He= 2 1013 atoms per second
- 18Ne= 8 1011 atoms per second
- The ultimate beta-beam facility flux would be for anti-neutrinos 29 1018 and for neutrinos 11 1018 in ten years running

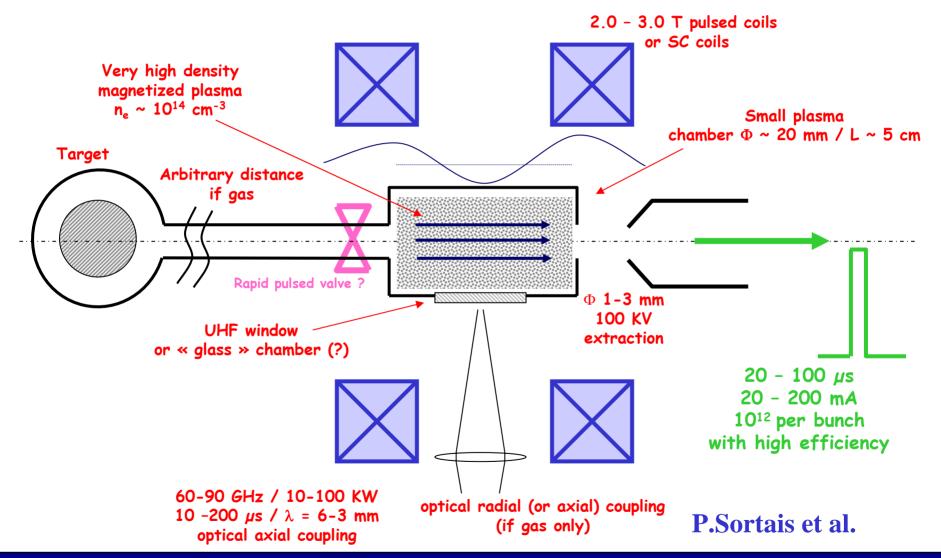
Ion production - ISOL method


- Isotope Separation OnLine method.
- Few GeV proton beam onto fixed target.

⁶He production from 9 Be(n, α)

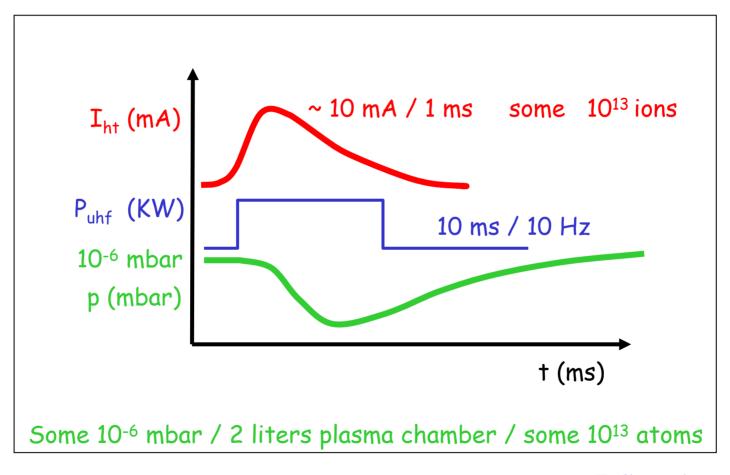
- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- ⁶He production rate is $\sim 2 \times 10^{13}$ ions/s (dc) for ~ 200 kW on target.

¹⁸Ne production

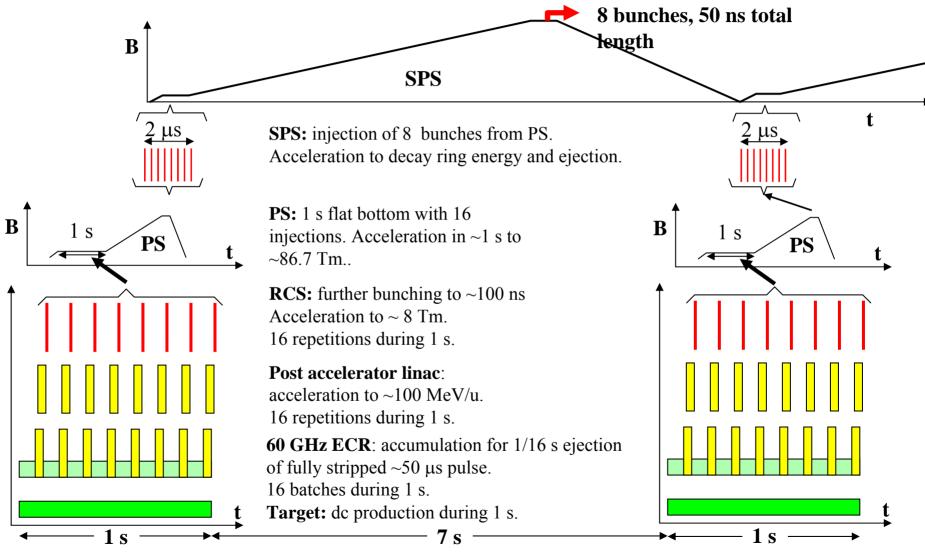

Spallation of close-by target nuclides

- ²⁴Mg¹² (p, p₃ n₄) ¹⁸Ne¹⁰.
- Converter technology cannot be used; the beam hits directly the magnesium oxide target.
- Production rate for 18 Ne is ~ $1x10^{12}$ ions/s (dc) for ~200 kW on target.
- ¹⁹Ne can be produced with one order of magnitude higher intensity but the half-life is 17 seconds!

60 GHz « ECR Duoplasmatron » for gaseous RIB



PHOENIX 28 GHz ionic pumping during preglow effect



P.Sortais et al.

From dc to very short bunches

Intensities, 6He

Machine	Total Intensity out (1012)	Comment					
Source	20	DC pulse, Ions extracted for 1 second					
ECR	1.16934	Ions accumulated for 60 ms, 99% of all 6He ions in highest charge state, 50 microseconds pulse length					
RCS inj	0.582144	Multi-turn injection with 50% efficiency					
RCS	0.570254	Acceleration in 1/32 seconds to top magnetic rigidity of 8 Tm					
PS inj	6.82254	Accumulation of 16 bunches during 1 second					
PS PS	5.75908	Acceleration in 0.8 seconds to top magnetic rigidity of 86.7 Tm and merging to 8 bunches.					
SPS	5.43662	Acceleration to gamma=100 in 2.54 seconds and ejection to decay ring of all 8 bunches (total cycle time 6 seconds)					
Decay ring	58.1137	Total intensity in 8 bunches of 50/8 ns length each at gamma=100 will result in a duty cycle of 0.0022. Maximum number of merges = 15.					

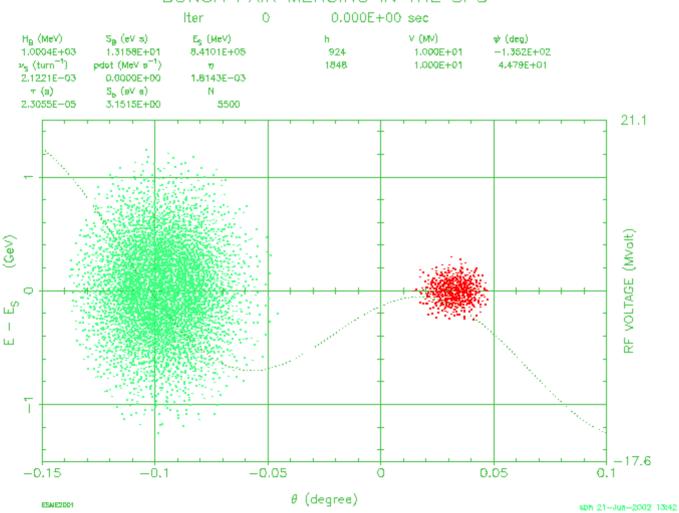
Intensities, 18Ne

Machine	Total Intensity out (1010)	Comment				
Source	80	DC pulse, Ions extracted for 1 second				
ECR	1.42222	Ions accumulated for 60 ms, 30% of all 18Ne ions in one dominant charge state, 50 microseconds pulse length				
RCS inj	0.709635	Multi-turn injection with 50% efficiency				
RCS	0.703569	Acceleration in 1/32 seconds to top magnetic rigidity of 8 Tm				
PS inj	10.093	Accumulation of 16 bunches during 1 second.				
PS	9.57532	Acceleration in 0.8 seconds to top magnetic rigidity of 86.7 Tm and merging to 8 bunches.				
SPS	9.45197	Acceleration to gamma=100 in 1.42 seconds and ejection to decay ring of all 8 bunches (total cycle time 3.6 seconds)				
Decay ring	277.284	8 bunches of 50/8 ns length each will at gamma=100 result in a duty cycle of 0.0022. Maximum number of merges = 40.				

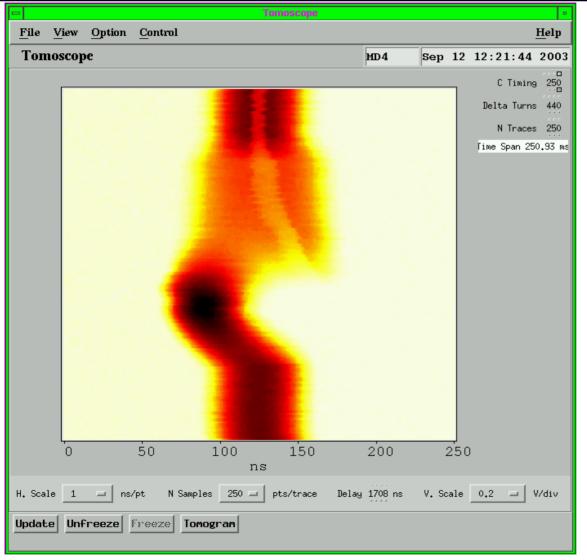
Decay ring design aspects

- The ions have to be concentrated in a few very short bunches
 - Suppression of atmospheric background via time structure.
- There is an essential need for stacking in the decay ring
 - Not enough flux from source and injector chain.
 - Lifetime is an order of magnitude larger than injector cycling (120 s compared with 8 s SPS cycle).
 - Need to stack for at least 10 to 15 injector cycles.
- Cooling is not an option for the stacking process
 - Electron cooling is excluded because of the high electron beam energy and, in any case, the cooling time is far too long.
 - Stochastic cooling is excluded by the high bunch intensities.
- Stacking without cooling "conflicts" with Liouville

Asymmetric bunch pair merging

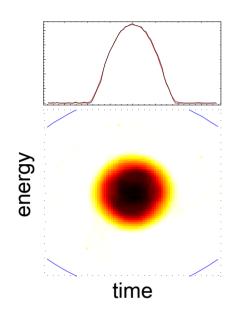

- Moves a fresh dense bunch into the core of the much larger stack and pushes less dense phase space areas to larger amplitudes until these are cut by the momentum collimation system.
- Central density is increased with minimal emittance dilution.
- Requirements:
 - Dual harmonic rf system. The decay ring will be equipped with 40 and 80 MHz systems (to give required bunch length of ~10 ns for physics).
 - Incoming bunch needs to be positioned in adjacent rf "bucket" to the stack (i.e., ~10 ns separation!).

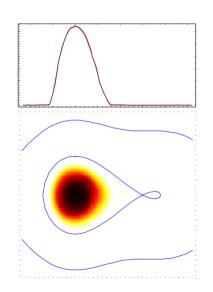
Simulation (in the SPS)


BUNCH PAIR MERGING IN THE SPS

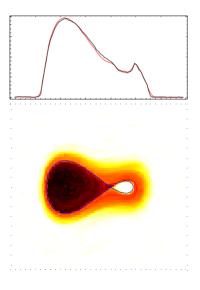
Test experiment in the PS

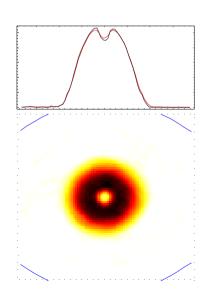
A large bunch is merged with a small amount of empty phase space.


Longitudinal emittances are combined.


Minimal blow-up.

Test experiment in CERN PS



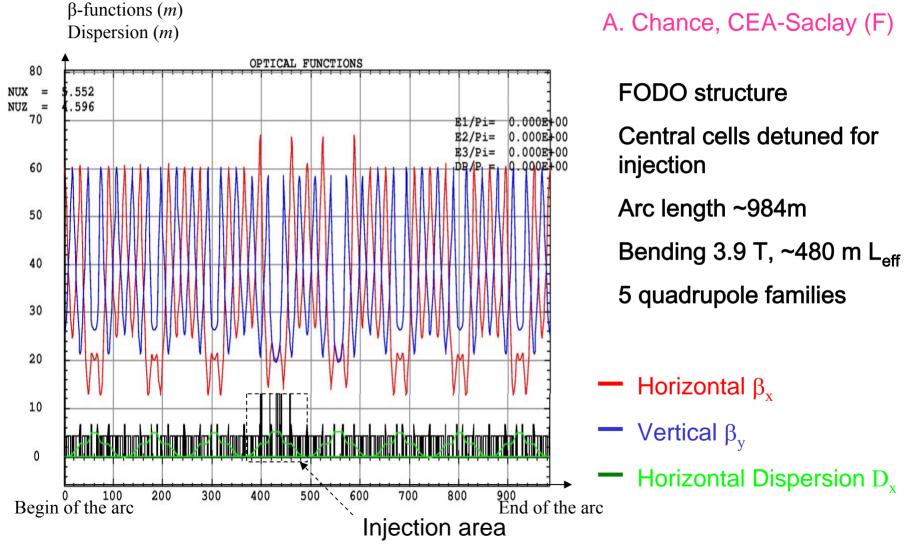


S. Hancock, M. Benedikt and J-L.Vallet, *A proof of principle of asymmetric bunch pair merging*, AB-Note-2003-080 MD

Ingredients

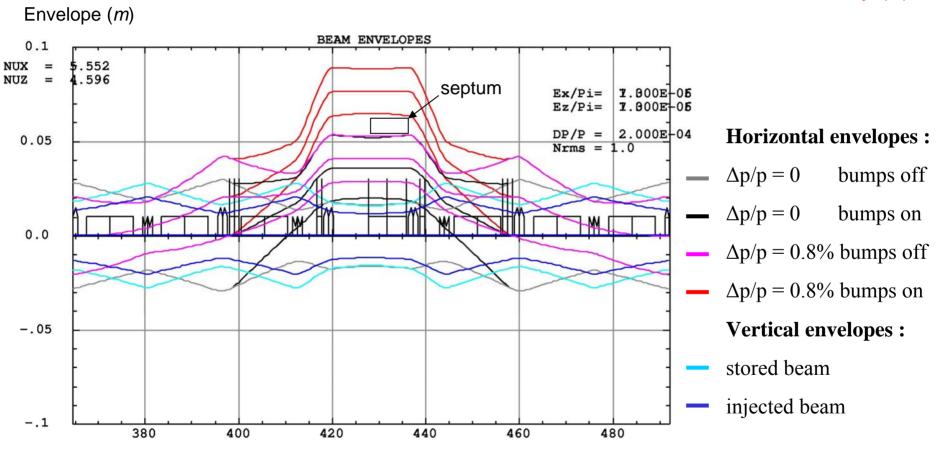
- h=8 and h=16 systems of PS.
- Phase and voltage variations.

Decay ring injection design aspects



- Asymmetric merging requires fresh bunch injected very close longitudinally to existing stack. Conventional injection with fast elements (septa and kickers) is excluded.
- Alternative injection scheme
 - Inject an off-momentum beam on matched dispersion trajectory.
 - No fast elements required (bumper rise and fall \sim 10 μ s).
 - Requires large normalized dispersion at injection point (small beam size and large separation due to momentum difference).
 - Price to be paid is larger magnet apertures in decay ring.

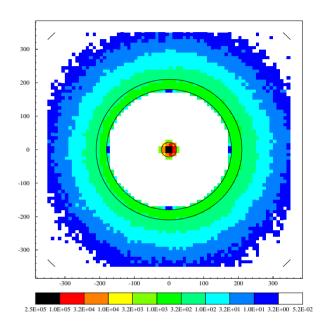
Decay ring arc lattice design



Decay ring injection envelopes

A. Chance, CEA-Saclay (F)

Decay losses



Losses during acceleration

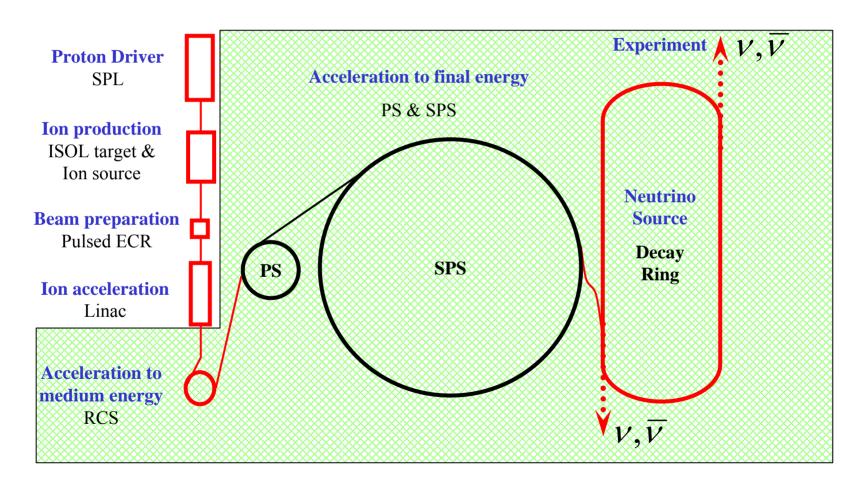
- Full FLUKA simulations in progress for all stages (M. Magistris and M. Silari, *Parameters of radiological interest for a beta-beam decay ring*, TIS-2003-017-RP-TN).

Preliminary results:

- Manageable in low-energy part.
- PS heavily activated (1 s flat bottom).
 - Collimation? New machine?
- SPS ok.
- Decay ring losses:
 - Tritium and sodium production in rock is well below national limits.
 - Reasonable requirements for tunnel wall thickness to enable decommissioning of the tunnel and fixation of tritium and sodium.
 - Heat load should be ok for superconductor.

FLUKA simulated losses in surrounding rock (no public health implications)

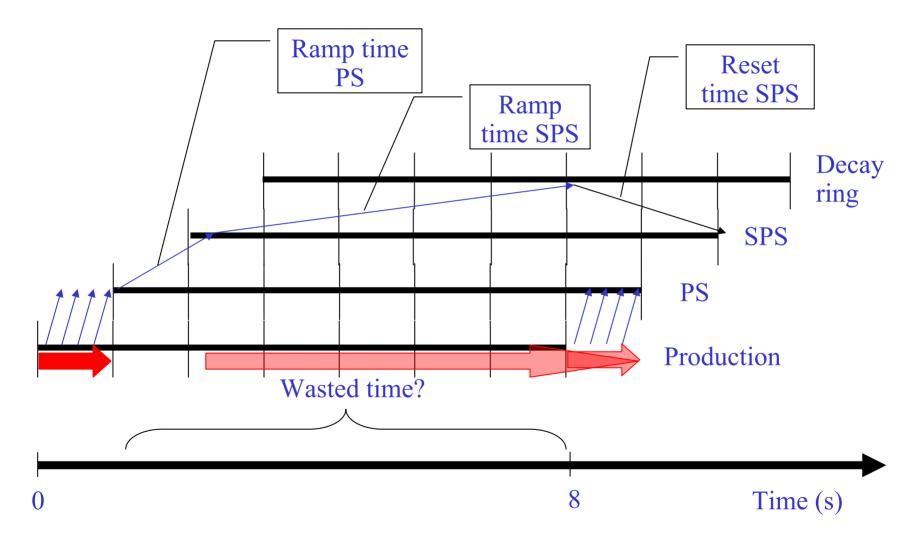
Future R&D


- Future beta-beam R&D together with EURISOL project
- Design Study in the 6th Framework Programme of the EU
- The EURISOL Project
 - Design of an ISOL type (nuclear physics) facility.
 - Performance three orders of magnitude above existing facilities.
 - A first feasibility / conceptual design study was done within FP5.
 - Strong synergies with the low-energy part of the beta-beam:
 - Ion production (proton driver, high power targets).
 - Beam preparation (cleaning, ionization, bunching).
 - First stage acceleration (post accelerator ~100 MeV/u).
 - Radiation protection and safety issues.

Beta-beam task

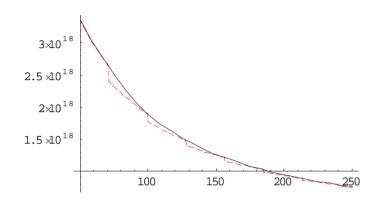
From exit of the heavy ion Linac (~100 MeV/u) to the decay ring (~100 GeV/u).

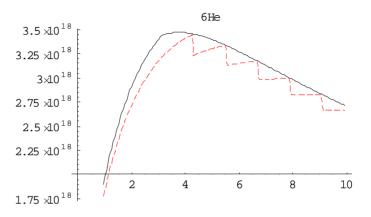
Beta-beam sub-tasks



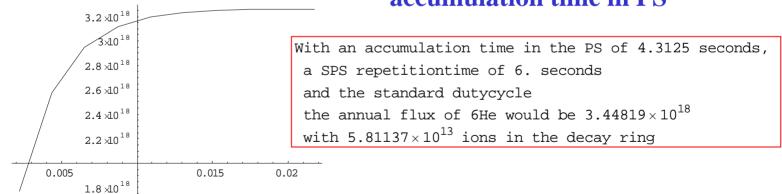
- Beta-beam task starts at exit of EURISOL post accelerator and comprises the conceptual design of the complete chain up to the decay ring.
- Participating insitutes: CERN, CEA-Saclay, IN2P3, CLRC-RAL, GSI, MSL-Stockholm.
- Organized by a steering committee overseeing 3 sub-tasks.
 - ST 1: Design of the low-energy ring(s).
 - ST 2: Ion acceleration in PS/SPS and required upgrades of the existing machines including new designs to eventually replace PS/SPS.
 - ST 3: Design of the high-energy decay ring.
 - Detailed work and manpower planning is under way.
 - Around 38 (13 from EU) man-years for beta-beam R&D over next 4 years (only within beta-beam task, not including linked tasks).

Wasted time or accumulation time?



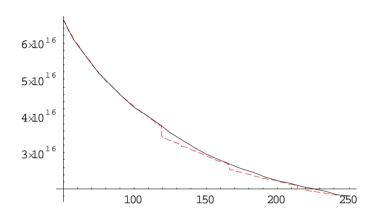


How to change the flux, ⁶He



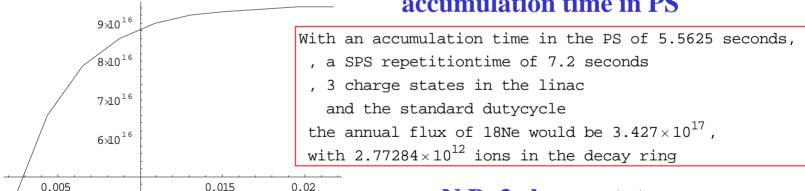
Flux as a function of gamma

Flux as a function of accumulation time in PS



Flux as a function of duty cycle

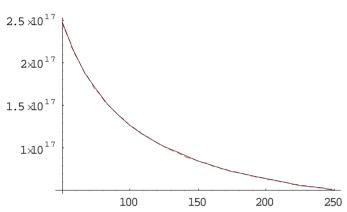
How to change the flux, ¹⁸Ne



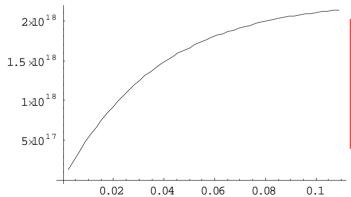
1.1 ×10¹⁷
1×10¹⁷
9×10¹⁶
8×10¹⁶
7×10¹⁶
6×10¹⁶
2 4 6 8 10

Flux as a function of gamma

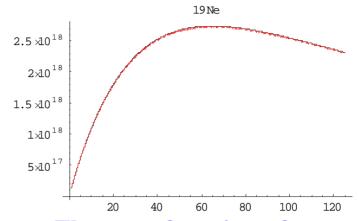
Flux as a function of accumulation time in PS


Flux as a function of duty cycle

N.B. 3 charge states through the linac!



How to change the flux, ¹⁹Ne



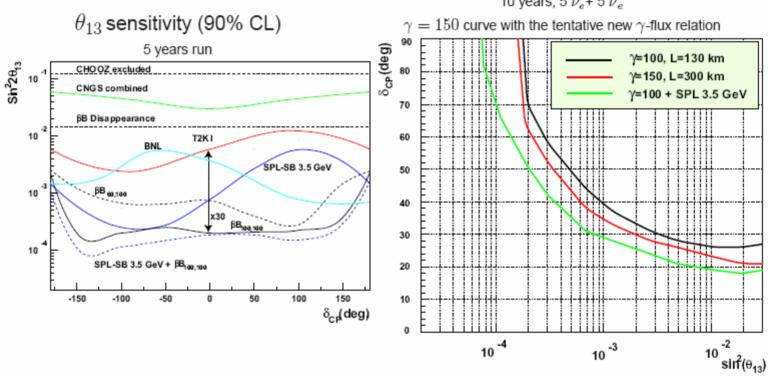
Flux as a function of gamma

Flux as a function of duty cycle

Flux as a function of accumulation time in PS

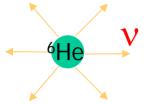
With an accumulation time in the PS of 56.25 seconds, , a SPS repetitiontime of 58.8 seconds , 3 charge states in the linac and the standard dutycycle the annual flux of 19Ne would be 7.94514×10^{18} with 8.55587×10^{13} ions in the decay ring

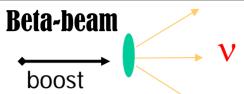
N.B. 3 charge states through the linac!



Physics reach Ultimate beta-beam, gamma=100/100

10 years, 5 ν_e + 5 $\overline{\nu}_e$


M. Mezzetto, "Physics with BetaBeams and SuperBeams from CERN to Frejus", NNN05, Aussois, 08 April 2005.


22

LOW-ENERGY BETA-BEAMS

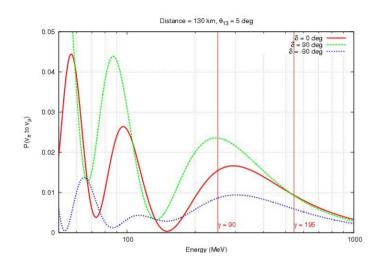

C. Volpe, hep-ph/0303222 Journ. Phys. G. 30(2004)L1

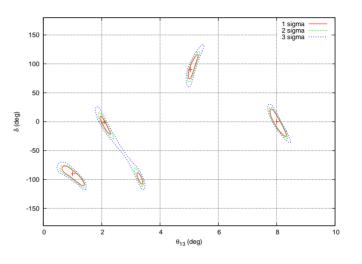
THE PROPOSAL

To exploit the beta-beam concept to produce intense and pure low-energy neutrino beams.

PHYSICS POTENTIAL

- Neutrino-nucleus interaction studies for particle, nuclear physics, astrophysics (nucleosynthesis).


 Important for neutrinoless double-beta decay.


 C. Volpe, hep-ph/0501233
- Neutrino properties, like v magnetic moment.

EC or the dream of monochromatic neutrino beams

Decay	T _{1/2}	BR_{v}	EC/v	I_{EC}^{eta}	B(GT)	E _{GR}	$\Gamma_{\sf GR}$	Q_{EC}	Eν	ΔE_{ν}
¹⁴⁸ Dy→ ¹⁴⁸ Tb [*]	3.1 m	1	0.96	0.96	0.46	620		2682	2062	
¹⁵⁰ Dy→ ¹⁵⁰ Tb [*]	7.2 m	0.64	1	1	0.32	397		1794	1397	
$^{152}\text{Tm2}^{-} \rightarrow ^{152}\text{E}_{\text{T}}^{}^{*}}$	8.0 s	1	0.45	0.50	0.48	4300	520	8700	4400	520
¹⁵⁰ Ho2 ⁻ → ¹⁵⁰ Dy [*]	72 s	1	0.77	0.56	0.25	4400	400	7400	3000	400

Conclusions

- · Well-established beta-beam baseline scenario.
- · Beta-Beam Task well integrated in the EURISOL DS.
 - Strong synergies between Beta-beam and EURISOL.
- · Design study started for "base line" isotopes.
- Baseline study should result in a credible conceptual design report.
 - We need a "STUDY 1" for the beta-beam to be considered a credible alternative to super beams and neutrino factories
 - New ideas welcome but the design study cannot (and will not) deviate from the given flux target values and the chosen baseline
 - Parameter list to be frozen by end of 2005
- Recent new ideas promise a fascinating continuation into further developments beyond (but based on) the ongoing EURISOL (beta-beam) DS
 - Low energy beta-beam, EC beta-beam, High gamma beta-beam, etc.
- And this is only the beginning...