

Future options for the beta-beam with a focus on production issues

M. Lindroos, CERN

on behalf of the Beta-beam Study Group http://cern.ch/beta-beam

NUFACT 2007

Acknowledgements

- All colleagues in EURISOL
- My CERN colleagues working on beta-beams:
 - Michael Benedikt, Adrian Fabich, Steven Hancock, Elena Wildner
- Prof. Carlo Rubbia
- Yacine Kadi, Vasilis Vlachoudis, Alfredo Ferrari
- Mauro Mezzetto and Pierro Zuchelli
- Andreas Jansson at FNAL
- All other colleagues who helped with and supported this work
- My colleagues at ANL
- Prof. Dave Casper, UCI
- My wife and children

- Low-energy beta-beam: relativistic $\gamma < 20$
 - Physics case: neutrino scattering
- Medium energy beta-beam: $\gamma \sim 100$
 - EURISOL DS
 - Today the only detailed study of a beta-beam accelerator complex
- High energy beta-beam: γ >350
 - Take advantage of increased interaction cross-section of neutrinos
- Monochromatic neutrino-beam
 - Take advantage of electron-capture process
- High-Q value beta-beam: $\gamma \sim 100$

Accelerator physicists together with neutrino physicists defined the accelerator case of γ =100/100 to be studied first (EURISOL DS).

What would we like to improve in the beta-beam conceptual design?

- Production of radioactive nuclei
 - Limit of the ISOL method
 - Production ring
 - Direct production
- Highly efficient bunching and ionization of the ions
 - Should it be a Preglow ECR...
 - ... or and Afterglow ECR?
- High(er) energy in the decay ring
 - Fast (and cheap) acceleration to high energies
 - Affordable high gamma decay ring
- Magnet protection and collimation for higher intensity beams
 - Open mid plan SC dipoles

- Achieve an annual neutrino rate of:
 2.9*10¹⁸ anti-neutrinos from ⁶He
 - 1.1 10¹⁸ neutrinos from ¹⁸Ne

- 2 10¹³ <u>atoms</u>/s of ⁶He -> 1.8 10¹³ <u>ion</u>s/s ⁶He^{q+}(90%!!)
- 8 10¹¹ <u>atoms</u>/s of ¹⁸Ne -> 2.7 10¹¹ <u>ions</u>/s ¹⁸Ne^{q+} (30%)
- He-6 and Ne-18 beams are presently available at GANIL, DUBNA, ISOLDE, ISAAC,LLN
- After the ion source, the available intensity is at <u>maximum</u>

3 10⁸ ions/s for ⁶He¹⁺ 3 10⁸ ions/s for ¹⁸Ne¹⁰⁺

	Nominal production rate [ions/s]	Required production rate [ions/s]	Missing factor
6 He	$2 imes 10^{13}$	$2 imes 10^{13}$	1
18 Ne	$8 imes 10^{11}$	$1.9 imes10^{13}$	24

- Major challenge for ¹⁸Ne
- New production method proposed by C. Rubbia and Y. Mori
- Direct production

- Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- ⁶He production rate is ~2x10¹³ ions/s (dc) for ~200 kW on target.

Multiple targets and ECR sources with accumulation ring

Target

Target

7

- Multiple target and multiple ECR sources
 - Proton beam split between 7 targets i.e. 1.4 MW of protons in total on all targets
 - 1 second accumulation time in the ECR source
 - 0.1 seconds between injections into linac and Accumulation ring
 - Accumulation of 10 bunches in SPS
 - ECR pulse: 2 10¹¹ ions per pulse
 - Annual rate: 1 10¹⁸ (without accumulation ring 4 10¹⁷⁾
 - Drawback: Expensive and complicated!

• Multiple target and single ECR sources

- Proton beam split between 7 targets i.e. 1.4 MW of protons in total on all targets
- 0.1 second accumulation time in the ECR source
- 0.1 seconds between injections into linac and Accumulation ring
- Accumulation of 10 bunches in SPS
- ECR pulse: 1.4 10¹¹ ions per pulse
- Annual rate: 1 10¹⁸ (without accumulation ring 4 10¹⁷⁾
- Drawback: Efficiency in the transport from target to ECR!

Multiturn injection with electron cooling

Half life [s]	0.1	1	10
T _{vacuum} [s]	30	30	30
Intensity ions [every 100 ms in 30 microsceonds]	10^{4}	$5 \ 10^5$	$5 10^5$
$T_{cool}[ms]$	100	100	100
Number of turns	10	10	10
Final emittance [micrometer]	0.1	0.1	0.1
Final number of particles in stack	$3 10^4$	$3 \ 10^7$	$3 \ 10^8$

Why do we gain with such an accumulation ring?

- Left: Cycle without accumulation
- Right: Cycle with accumulation. Note that we always produce ions in this case!

Measurements at Louvain-La-Neuve (CRC) of cross section

Courtesy to Semen Mitrofanov and Marc Loislet at CRC, Belgium

NUFACT 2007

- The gas target was constructed like a cell with thin entrance foils
- In experiment the target pressure and the ³He beam energy was changed

Beam energy, MeV	Target pressure, mbar (torr).	E _{loss} ,MeV	
13	900 (675)	2	
14.8	1200 (900)	2.4	

Preliminary results from CRC

- Production of 10^{12 18}Ne in a MgO target:
 - At 13 MeV, 17 mA of 3 He
 - At 14.8 MeV, 13 mA of ³He
- Producing 10¹³ ¹⁸Ne could be possible with a beam power (at low energy) of 1 MW (or some 130 mA ³He beam).
- To be studied:
 - Extraction efficiency
 - Optimum energy
 - Cooling of target unit
 - High intensity and low energy ion linac
 - High intensity ion source

Beam cooling with ionisation losses – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

See also: Development of FFAG accelerators and their applications for intense secondary particle production, Y. Mori, NIM A562(2006)591

Transverse and longitudinal cooling in paper by Carlo Rubbia et al.

NUFACT 2007

Beta-beam team

Inverse kinematics production and ionisation parameters in paper by Carlo Rubbia et al.

Table 1 Some ionisation parameters for ⁶Li and ⁷Li in the energy interval of interest

Energy, T (MeV)	dE/dx (MeV/($\sqrt{\langle Z \rangle^2}$		δE (keV) for loss of 0.3 MeV		
	⁶ Li	⁷ Li	⁶ Li	⁷ Li	⁶ Li	⁷ Li
5	3.356	3.355	2.94	2.89	10.646	9.866
10	2.120	2.014	3.00	3.00	11.751	10.205
15	1.660	1.573	3.00	3.00	13.340	11.714
20	1.356	1.329	3.00	3.00	14.752	12.999
25	1.116	1.092	3.00	3.00	16.102	14.174
30	0.965	0.890	3.00	3.00	17.331	15.323
35	0.861	0.778	3.00	3.00	18.428	16.309

Collection in paper by Carlo Rubbia et al.

"The technique of using very thin targets in order to produce secondary neutral beams has been in use for many years. Probably the best known and most successful source of radioactive beams is ISOLDE."

Problems with collection device

- A large proportion of beam particles (⁶Li) will be scattered into the collection device.
 - The scattered primary beam intensity could be up to a factor of 100 larger than the RI intensity for 5-13 degree using a Rutherford scattering approximation for the scattered primary beam particles (M. Loislet, UCL)
 - The ⁸B ions are produced in a cone of 13 degree with 20 MeV ⁶Li ions with an energy of 12 MeV±4 MeV (33% !).

• ²⁰Ne(p,t)¹⁸Ne

- H.Backhausen et al, RCA, 29(1981)1

• ¹⁶O(³He,n)¹⁸Ne

- V.Tatischeff et al, PRC,68(2003)025804

• 6C(CO₂, 6He)¹⁸Ne?

- K.I.Hahn et al, PRC,54(1996)1999
- \cdot ⁷Li(T,A)⁶He

- Low-energy Ionization cooling of ions for Beta Beam sources - D. Neufer (To be submitted)
 - Mixing of longitudinal and horizontal motion necessary
 - Less cooling than predcited
 - Beam larger but that relaxes space charge issues
 - If collection done with separator after target, a Li curtain target with ³He and Deutron beam would be preferable
 - Separation larger in rigidity

Gamma	Rigidity	Ring length	Dipole Field	
	[Tm]	<u>T=5 T</u>	<u>rho=300 m</u>	
		<u>f=0.36</u>	<u>Length=6885m</u>	
100	935	4197	3.1	
150	1403	6296	4.7	
200	1870	8395	6.2	
350	3273	14691	10.9	
500	4676	20987	15.6	
Now SDS	Civil	Mogn		
	engineering	R&D		
NUFACT 2007	Beta-be	am team	21	

Accumulation with Barrier buckets (no duty cycle)

NUFACT 2007

Beta-beam team

Decay	T _{1/2}	BR_{v}	EC/v	I_{EC}^{β}	B(GT)	E_{GR}	$\Gamma_{\rm GR}$	Q _{EC}	Ev	ΔE_{v}
¹⁴⁸ Dy→ ¹⁴⁸ Tb [*]	3.1 m	1	0.96	0.96	0.46	620		2682	2062	
¹⁵⁰ Dy→ ¹⁵⁰ Tb [*]	7.2 m	0.64	1	1	0.32	397		1794	1397	
$^{152}\text{Tm2} \rightarrow ^{152}\text{E}_{\text{T}}^{*}$	8.0 s	1	0.45	0.50	0.48	4300	520	8700	4400	520
$^{150}\text{Ho2} \rightarrow ^{150}\text{Dy}^{*}$	72 s	1	0.77	0.56	0.25	4400	400	7400	3000	400

NUFACT 2007

10

• At a rate of 10¹⁸ neutrinos using the EURISOL beta-beam facility:

Accelerator	RCS	PS	SPS	DR	DR Peak Current
Isotope	[10 ¹² C]	[10 ¹³ C]	[10 ¹³ C]	[10 ¹⁴ C]	[kA]
¹⁴⁸ Dy	120	102	828	87.6	3.74
¹⁵⁰ Dy	139	117	948	97.8	4.18
¹⁵⁰ Ho	86.1	74.0	602	68.7	2.93
¹⁵² Tm	28.3	23.2	162	27.5	1.17
¹⁸ Ne	2.71	4.35	4.29	7.47	1.60

- Pulsed modes of the ECRIS: afterglow and preglow
 - Afterglow: well-known from 10 to 18 GHz (Pb²⁷⁺ LHC beam)
 - Preglow: experimental evidence at LPSC, predicted by a simple model, data analysis under progress.

- Preglow experiments at 18 and 28GHz for ³He and ²²Ne gases have been achieved, still under analysis (background suppression ¹²C, ¹⁴N, ¹⁶O)
- Collaboration with the Grenoble HMFL for the 60GHz magnetic structure
- 60GHz ion source + Gyrotron funding: CPER accepted, under final negociation ~1M€
- Collaboration with the IAP of Nizhniy Novgorod (2006-2008) 37.5 GHz and 75 GHz plasma studies

3He+ PGW Pulses structure vs MicroWave frequency

Preglow Pulse FWHM Range for 18 & 28 GHz MicroWave Heating

18 GHz : high Magnetic confinement => "large" FWHM ($300 < T < 1100 \ \mu s$) 28 GHz : low magnetic confinement => "short" FWHM ($150 < T < 300 \ \mu s$) 60 GHz T< 50 μs ?

NUFACT 2007

Beta-beam team

Alternative design

Denis Hitz, CEA Grenoble

- Strong confinement
- Large plasma chamber
- No gas mixing 1 charge state (¹⁸Ne¹⁰⁺?)
- Different frequencies 28+35 GHz
- Afterglow only
- Original method for pulsing

several central coils for a good confinement at injection and a weaker confinement at extraction

Injection NUFACT 2007 Extraction Beta-beam team

- The physics made possible with the new production concept proposed by Rubbia and Mori needs to be explored
 - The production ring concept and the production cross sections will be measured in EURONU DS
- The collection of the radioactive ions seems to be a critical aspect of this proposal
 - Would it be possible to use a gas cell combined with a separator?
 - Can we extract Boron as BF₃?
- The efficiency of the initial ionization and bunching
 - Continued R&D on 60 GHz ECR source
 - Proposal to use afterglow in VENUS/GTS type source
 - Proposal to use basic duo-plasmatron source
- The stacking and low duty cycle is a major constraint on the betabeam
 - Can we live with a DC neutrino beam at higher neutrino energies?
 - Can one use Barrier buckets to fill the decay ring?
- These issues will be addressed in the Eurov Design Study

• If the beta-beam facility could start with anti-neutrinos...

...we could start early with a neutron converter target or direct production target producing ^6He or ^8Li to measure $\theta_{13}...$

...and later upgrade the facility for higher intensities and isotopes giving us neutrinos (18Ne or 8B) to measure CP violation.

If we do it today, couldn't we make use of the Main injector at Fermi lab, build a new decay ring (with acceleration) and an experiment in Soudan?

Thank you for you attention!