

First analysis of the loss pattern in cern machines

Jens Stadlmann GSI, Darmstadt

Beta Beam Workshop 14th April 2005

Outline

- Introduction to StrahlSim
- First results of loss calculations for the SPS
- Discussion and outlook

Dynamic Vacuum Effects

Life Time decreases drastically with intensity

caused by beam loss induced vacuum effects

14.4.2005

Simulation with tracking and vaccum effects: StrahlSim by C. Omet (GSI)

Status of implemented mechanisms ins StrahlSim

- Initial systematic beam losses (e.g. multi turn injection losses, RF capture losses)
- Projectile and target ionization and capture cross sections and the resulting ionization and multiple ionization degree
- Collimation efficiency for each generated charge state
- Energy dependence of the collimation efficiency and of the cross sections
- Effective desorption rate of the collimation system (leakage rate)
- Initial residual gas composition
- Desorption coefficient and assumption for the composition of the desorped gases
- Desorption generated by target ionization
- Coulomb scattering with the residual gas

Simulation with tracking and vaccum effects: StrahlSim by C. Omet (GSI)

SIS12/18 regular cells with tracked particles

The code tracks single particles, beam loss due to charge exchange and vacuum effects.

SIS18: Strahlverluste über Umfang

Calculated loss distribution:

(adoptable to decay induced losses?!)

14.4.2005

Solution for the FIAR Project: Collimation in a charge separator lattice

The existing synchrotron will be upgraded with dedicated collimators. The future FAIR accelerators will have a lattice structure optimized for charge collimation

A: Lattice ohne Speicherung von U²⁹⁺

B: Lattice mit Speicherung von U²⁹⁺

Loss pattern of SIS100

198.7 m

Losses only happen at the dedicated collimators

First analysis of the SPS lattice

1.) Loss pattern for the decay of helium

Beta Beams in

First analysis of the SPS lattice

Beta Beams in

Loss pattern in SPS lattice

- The losses occur mostly inside of the optical elements
- no prominent loss locations for collimators
- overall not much space for additional installations
- BUT in SPS the energy and therefore the loss rate is already high. Further time dependant simulations are possible with StrahlSim will show more detailed data

Outlook and discussion

- The loss analysis with StrahlSim is possible for the CERN machines. PS simulation has been started.
- The code offers global simulation of vacuum effects. The detailed localized simulation of the residual gas is under development. Interesting for Beta Beams too?
- The simulation of ramping and energy dependent lifetime of the ions in the beta beam facility is/can be implemented.
- The RCS injector can be optimized in respect of beam losses with the present tools.

Angular distribution

Winkelverteilung

