

First analysis of the

EURISOL Post-Accelerator

SC linac design

Jean-Luc Biarrotte, CNRS / IPN Orsay

STARTING POINT = SPIRAL-2 PHILOSOPHY

- Smoothest beam dynamics
 - Regular FDO lattice
 - Nb of matching sections is minimised
- Modular solution and simplified cryostats (no SC magnets)
- Alignement easier a priori
- Possibility to insert classical diagnostics at each period
- Ease of tuning (regular lattice, round beam at each diagnostic box)

PDS design = RIA / Legnaro philosophy

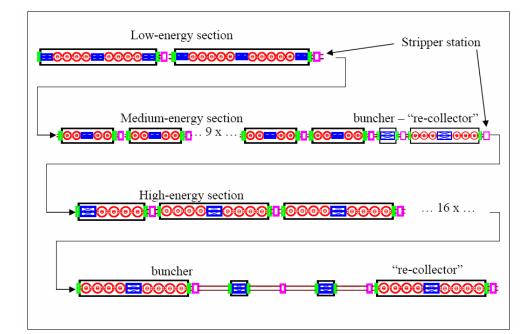
- SC solenoids in long cryostats
- More compact solution, but many uncertainties (cryostat technology, tuning, alignement)
 Abandonned within the SPIRAL-2 study

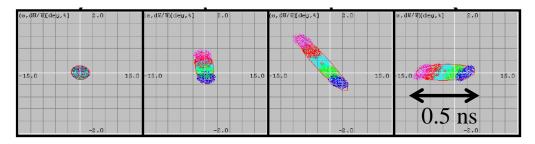
Jean-Luc Biarrotte, EURISOL DS meeting, Beta-Beam Task, CERN, 16/04/2005

About stripping stations

STRIPPING ADVANTAGES

Decrease the linac length (and cost):

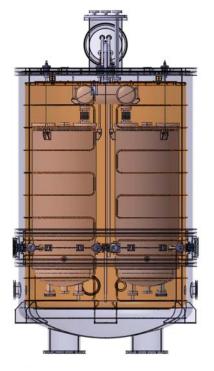

using 2 stripping stations, the linac length decreases from ~ 160m to ~ 110m (q/A = 1/5 @ 100MeV/u)


STRIPPING DRAWBACKS

- Degraded transmission and emittances
 - 74% transmission for ¹³² Sn ²⁵⁺
 - Emittances growth: x2 (T) and x3 (L)
- Implies multi-charge acceleration
 - Special matching sections
 - How do we tune ??
- High activation (shielding, maintenance)

=> HIGH INCREASE IN COMPLEXITY

=> COST ARGUMENT NOT SO OBVIOUS (TO BE EVALUATED)


Jean-Luc Biarrotte, EURISOL DS meeting, Beta-Beam Task, CERN, 16/04/2005

MAIN HYPOTHESIS

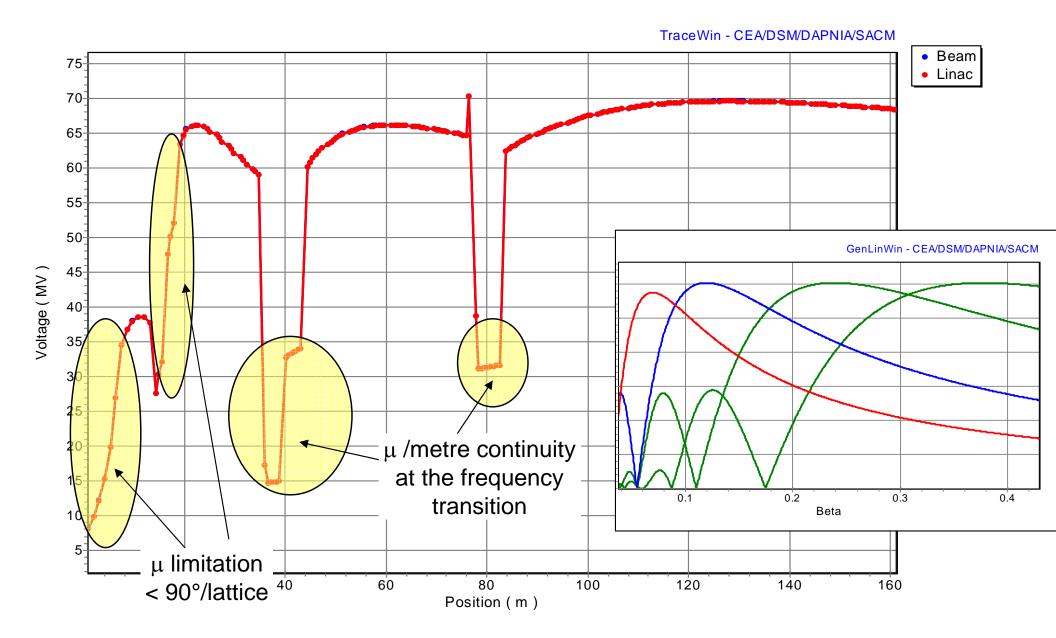
- Only 2-gap cavities are used for high q/A acceptance (with $\beta\lambda = 40cm max$.)
- Safe max. accelerating fields (Spiral-2 operating point = 6.5 MV/m)
- Distances between elements from the SPIRAL-2 study
- Input beam = RFQ + MEBT exit (we suppose it exists !)
 - 672 keV/u for all ions @ 88.05 MHz
- Architecture « à la SPIRAL-2 », NO STRIPPING STATIONS

DESIGN OPTIMISATION

- Reference particule = ¹³² Sn ²⁵⁺
- Optimisation criteria = LINAC LENGTH
- Conservative beam dynamics rules to minimise emittance growth & halo formation:
 - $\mu < 90^{\circ}/lattice$ to avoid main structure resonances (1/2, 1/3 & $\frac{1}{4}$)
 - Continuity of μ / meter between sections (to minimise sensibility to mismatch)
 - Safe synchronous phase law to keep sufficiently large bucket
 - + try to avoid space-charge coupling resonances for the beta-beam tune

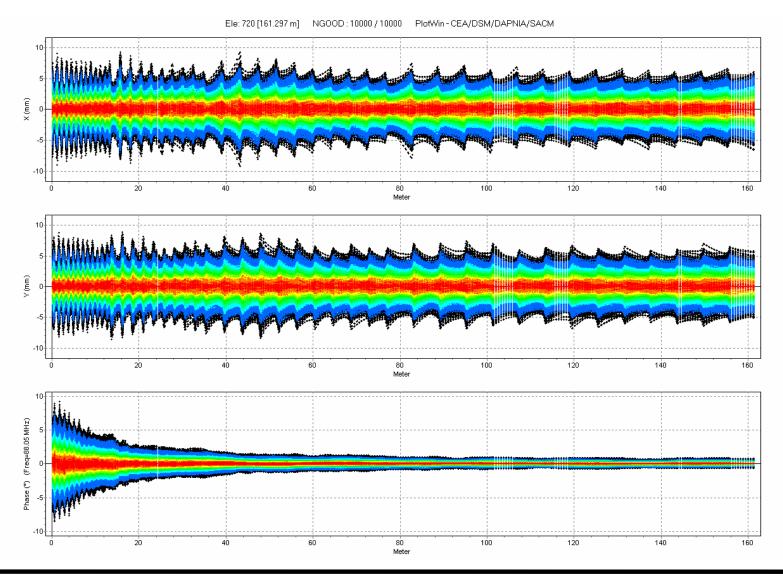
Obtained SC linac design

EURISOL C

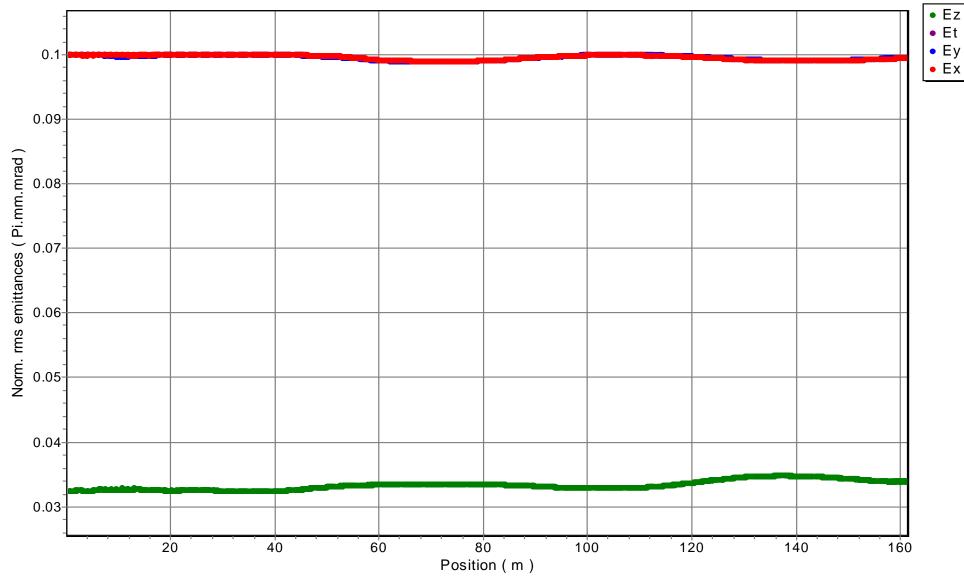

¹³² Sn ²⁵⁺	Section 1	Section 2	Section 3	Section 4	TOTAL
Cavity Freq.	88.05 MHz	88.05 MHz	176.1 MHz	264.15 MHz	-
Cavity β	0.07	0.12	0.24	0.38	-
# cav./ lattice	1	3	6	9	-
# cavities	12 cav	27 cav	60 cav	126 cav	225 cav
Length	13.3 m	21.6 m	41.7 m	84.7 m	161.3 m
Beam energy	0.67 MeV/u 2.8 MeV/u	2.8 MeV/u 14.3 MeV/u	14.3 MeV/u 39.2 MeV/u	39.2 MeV/u 100.1 MeV/u	0.67 MeV/u 100.1 MeV/u

A FEW COMMENTS

- 2 first sections uses SPIRAL-2 cavities (!!!)
- PDS linac = 114 m, 240 cavities, 60 MeV/ u without strippers
- Our design up to 60 MeV/u = 108 m, 162 cavities


¹³²Sn²⁵⁺ analytical beam dynamics

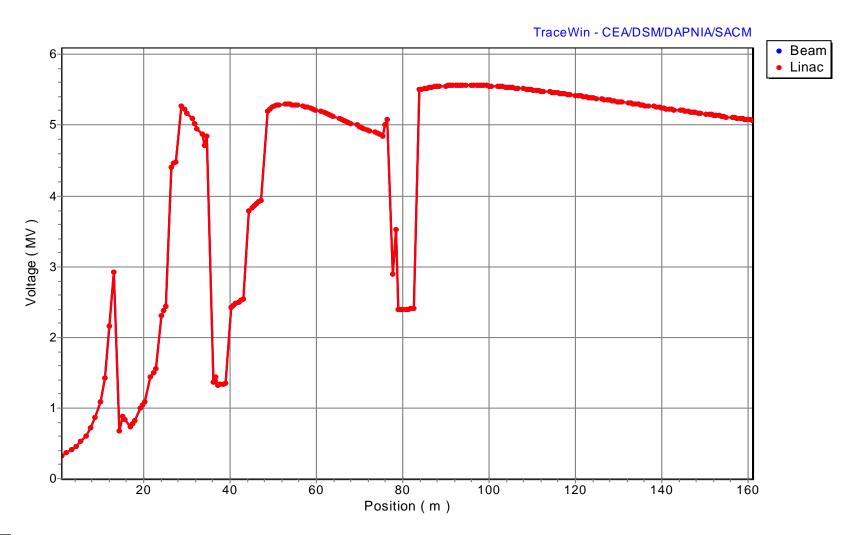
EURISOL 🔅


132Sn25+ multi-particule beam dynamics 😳 EURISOL 📀

- Input emittances (rms norm.): T = 0.1 pi.mm.mrad, L = 0.42 pi.deg.MeV (from PDS design)
- 0 mA, with Gaussian distribution truncated at 4 sigma

Jean-Luc Biarrotte, EURISOL DS meeting, Beta-Beam Task, CERN, 16/04/2005

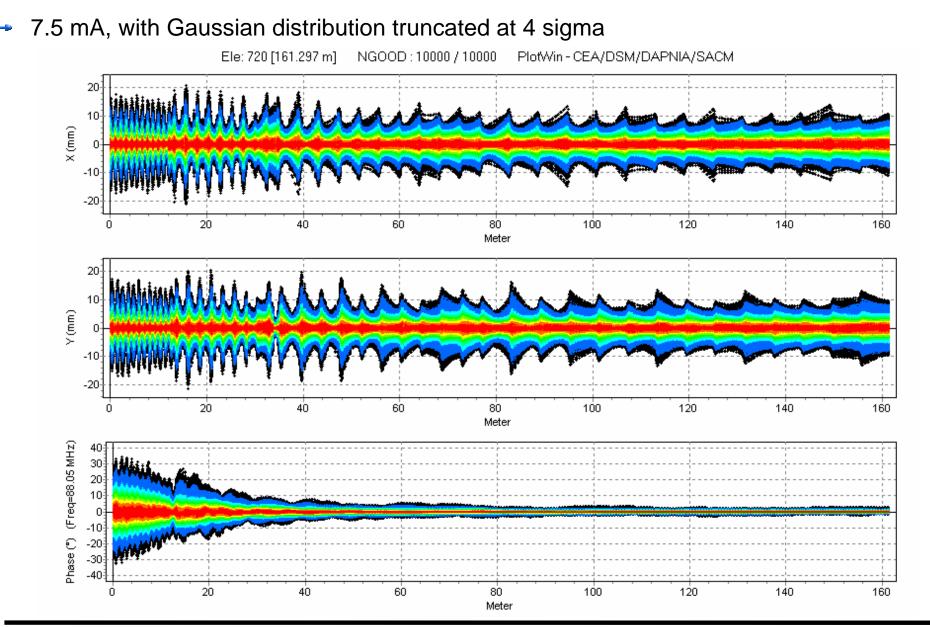
TraceWin - CEA/DSM/DAPNIA/SACM



⁶He²⁺ acceleration

C EURISOL C

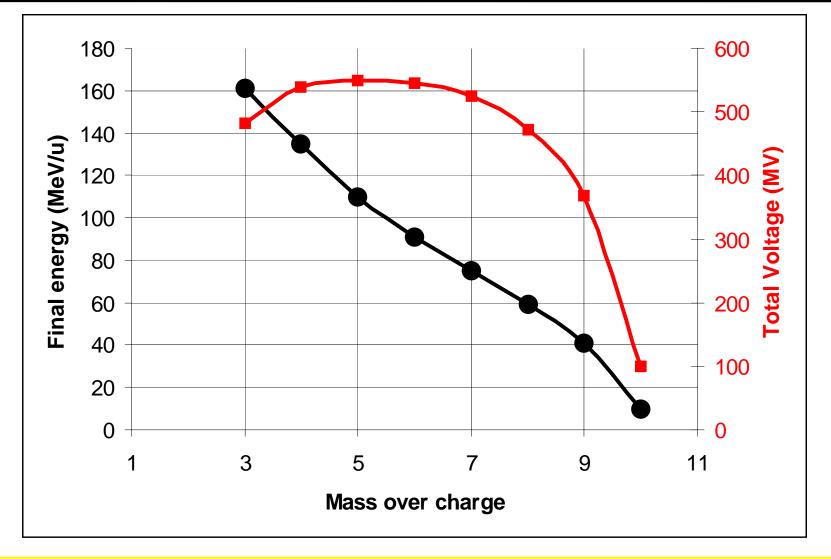
Final energy = 161.7 MeV/u


- Linac length for 100 MeV/u = 113 m
- Linac length for 50 MeV/u = 71 m

⁶He²⁺ acceleration at high current

Input emittances (rms norm.): T = 0.4 pi.mm.mrad, L = 0.27 pi.deg.MeV (from SPIRAL-2)

Ξ

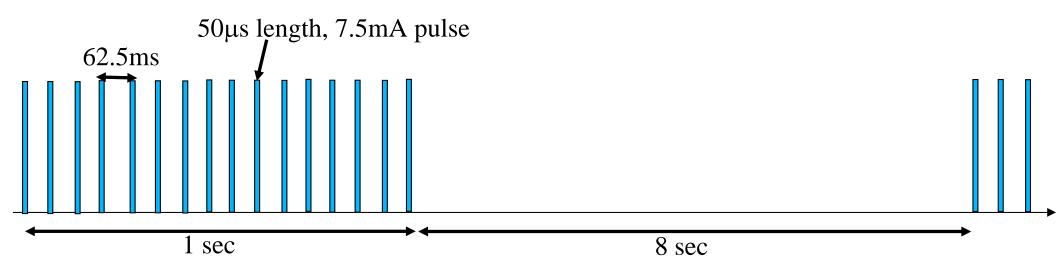

Jean-Luc Biarrotte, EURISOL DS meeting, Beta-Beam Task, CERN, 16/04/2005

TraceWin - CEA/DSM/DAPNIA/SACM • Ez Space charge has to be properly managed... • Et 0.51 • Ey • Ex 0.5 0.49 Norm. rms emittances (Pi.mm.mrad) 0.48 0.47 .46 0.45 0.44 0.43 0.42 0.41 0.4 0.39 20 40 60 80 100 12⁰ 140 160 Position (m)

Ξ

Other ions

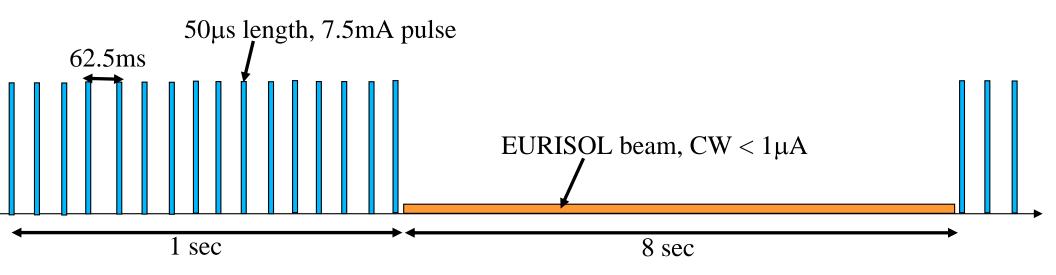
EURISOL O



=> IS IT ENOUGH FOR THE EURISOL NEEDS ?? / DO WE REALLY NEED 100 MeV/u FOR ALL IONS ?? DO WE WANT A/Q < 3 ??

=> IF NOT, 2 SOLUTIONS: A LONGER LINAC OR STRIPPING STATIONS

Beta beams requirements


- Acceleration of ⁶He²⁺ (or ¹⁸Ne⁶⁺ = same q/A !!!)
 - This should be (of course) possible, up to 160 MeV/u
 - Emittance values (and current) to be checked
- **Beam time structure** (16 Hz pulsing, 50 μ s length during 1 sec, no beam during 8 sec)
 - This is also (of course) possible on the beam dynamics point of view

Compatibility with EURISOL operation Compatibility with EURISOL operation

Beta-beams = 6 month continuous operation

- The EURISOL beam has to fit between the Beta-beam pulses, no choice !!!

Switching from the EURISOL beam to the Beta beam

Some adjustement has to be performed on ALL the linac elements (quads, cavities field & phase...) each time we switch (i.e. every 60 ms or more probably every 1 sec)

=> IS IT TECHNICALLY FEASIBLE ???

=> IS IT ACCEPTABLE FOR NUCLEAR PHYSICS ?

Let's suppose it's feasible...

- For EURISOL, we need only a few W per cavity (but 500 W amplifiers are foreseen)
- For Beta-beams, we need typically 20 kW per cavity
 - High power coupler has to be developed
 - Low Qext (high coupling) is needed
- Can the Qext of the coupler be changed quickly (< 1 sec) ??</p>
 - If NOT, we will need 5 to 10 kW per cavity, fully reflected, for the EURISOL operation
- What kind of RF operation can we foresee ?

Pulsed RF for beta-beam may save on operation cost if a fast varying coupler is used, but this may have hard consequences on cavity & RF system design

In every case, high investment overcost for RF systems (10 to 15 M€, first guess)

AC power needs	Fixed	coupler	Fast movable coupler	
Very rough estimations!!!	CW RF	Pulsed + CW RF	CW RF	Pulsed + CW RF
Beta beam pulse	4.6 MVA	50 kVA	4.6 MVA	50 kVA
EURISOL pulse	1.5 MVA	1.5 MVA	50 kVA	50 kVA
Total	1.8 MVA	1.3 MVA	0.5 MVA	0.05 MVA
Electricity cost	600 k€/y	430 k€/y	170 k€/y	20 k€/y

Jean-Luc Biarrotte, EURISOL DS meeting, Beta-Beam Task, CERN, 16/04/2005

Conclusions

FIRST DESIGN OF A POST-ACCELERATOR FOR EURISOL

- Spiral-2 architecture, No stripping stations, optimised for ¹³² Sn ²⁵⁺ up to 100 MeV/u
- 161 metres long, 225 cavities (*without injector, which has to be studied*)
- Up to 160 MeV/u for q/A=1/3, but only 10 MeV/u for q/A=1/10 : IS IT ENOUGH ??
- The advantages/drawbacks of using stripping sections should be better analysed
- Input energy from injector(s), emittances values ?

FIRST ANALYSIS OF THE COMPATIBILITY WITH THE BETA BEAM NEEDS

- Hard points are underlined :
 - A fast retuning of all the machine has to performed (at least) every 1 sec
 - Operation overcost around 0.5 M€/year (except if fast movable power couplers are used)
 - Study of a dedicated RF system + overcost is needed (+ SC cavities behaviour under pulsed RF)
- Do we really need ¹⁸Ne¹⁰⁺ ??? (since ¹⁸Ne⁶⁺ & ⁶Ne²⁺ have the same q/A)
 - If YES, a stripping stations is needed anyhow...
- One question to nuclear physicists: do they accept 1 sec beam hole every 8 sec?
- One question on the EURISOL operation mode: do the targets accept 1s driver beam holes ?