Loss Simulation in the BetaBeam Decay Ring

- 1. Review of motivation and requirements
 - Loss simulation -- an overloaded term
 - What's in the toolbox?
- 2. Accsim code and the Decay Ring
 - Tracking, decay and loss processes
 - Bunch merging
 - Injection and momentum stacking
 - Tracking and loss of secondary ions
- 3. Code development issues
 - Tracking and physics
 - Connections with other codes
- 4. Next activities
 - Accsim tasks
 - Beta+Accsim, and further studies

Frederick Jones TRIUMF Vancouver, Canada

Saclay 17th Oct 2005

Motivations for Tracking/Simulation

- Decay Ring has100% beam loss.
- Dynamics of the ring operation (injection, bunch merging, decay) and the variability of machine parameters suggest that a comprehensive computer model incorporating 3D multiparticle tracking, ring dynamics (injection, stacking, etc.) and interactions in matter would be useful...
 - To predict, moderate, and control losses
 - Identify high-loss areas in an operating scenario
 - Provide input to activation studies
 - Evaluate and optimize collimation/collection schemes and other relevant design features
- How far does "loss simulation" go?
 - ⇒ Loss profile + traditional activation study (FLUKA)
 - ⇒ ⇒ Tracking/simulation preprocessor for FLUKA, MARS, G4
 - $\Rightarrow \Rightarrow \Rightarrow$ Tracking/simulation incorporates geometry & P.I.M.

Simulator's toolbox

- Lattice/injection design
 - Beta (J.Payet & A.Chance)

(has many other capabilities & supports Mad-file output)

- Multiparticle (3D) tracking with ring dynamics (multiturn injection, orbit bumps, rf gymnastics) and loss detection
 - Accsim (□ Beta)
 - Orbit (ORNL, SNS) comprehensive, "open" source
 - ? STRUCT (MARS spinoff)
- Multiparticle tracking in a ring with interactions in matter
 - Accsim: stepping model with geometry for collimators, vacuum chamber walls, etc. Physics limited to ~0.1-10 GeV protons, EM and elementary nuclear interactions.
 - Orbit: collimator model for low-energy protons, adapting from CERN K2 code (Jeanneret).
 - STRUCT (equiv. Protons). Efficiency not known.

Codes: Map of the territory

* Variant versions

Accsim in a nutshell

- A 3D tracking and simulation code with space charge (longitudinal and transverse) and some particle interactions in materials (protons)
 - Foils, collimators, wire septa, vacuum chambers, internal targets
 - Detailed loss tabulation and summaries
- Fast basic tracking engine using matrix/thin-lens model
- Feature-laden: many additions to support specific studies
- Easy to modify and customize
- Multiturn injection and RF gymnastics are specialties
- Some applications: LANL-PSR, SNS, CSNS Beijing, CERN-PSB, Hitachi medical synchrotron, KEK-PS, J-PARC 3GeV & 50GeV, European HIDIF (multi-RF multi-species)
- Validation: comparison with measurements, other codes, and theory
 - LANL PSR loss profiles, KEK 12 GeV PS profiles with space charge, effects, J-PARC 3GeV ring STRUCT comparison, CERN-PS space charge benchmarks (Hofmann et al.), TRIUMF resonance studies.
- (Relatively) fast set-up makes it useful for "one-off" studies.

Accsim: Ion decay and loss processes

- Generalization for ions (primary and secondary): input particle charge, rest mass and number of nucleons.
 - Easy to just do everything on per-nucleon basis, but leads to trouble...
 - New rule: all coordinates and Δ 's based on total ion energy!
- Particle decay: input half-life
 - Actual lifetime is sampled at injection
 - Matrix transport instrumented to detect decay, track to decay point and convert to secondary ion, with tagging for "stop" or "continue tracking".
- Some considerations
 - Injection interval (SPS cycle) time (8 s.) is ~350000 turns
 - 6He: half-life of primary ion is ~3.5 million turns
 - Fill time (~1000 s.) is ~43.5 million turns
 - Ultra-Supercomputer needed! Unless...
 - ⇒ Work in stages, artificially shortening the time scale as appropriate.

Bunch merging

From ESME to Accsim

RF program for bunch merging (courtesy of S.Hancock)

Voltage: ____ Main RF ---- 2nd harmonic Phase: ____ Main RF ---- 2nd harmonic

- Injecting 6He Bunches from the SPS at γ_{D} =100 (557.3 GeV)
 - 1 eV-s, $\Delta p/p=0.4E-3$, offset $\Delta E=3.027$ GeV (no tilt yet)
- Next: generate Accsim distribution input file from ESME SPS stage, for better cross-check.

Decay ring bunch merging -- first 1/4 turn

Turn #, time [ms] 1-2.16688085 At injection point BETAx, BETAy 20.714241 20.0015736 ETAx, ETAxp 8.18494606-3.31139338E-09 Ts, DE0 (MeV) 557326.438 3027.65991 Vrf [kV] 20000. CO burnp [mm] 36.182724 -8.35862011E-08 Hits: total, average 0.0 Particles plotted, lost 10010 Real particles in circulating beam: 1.00100001E+13

BETA BEAM DECAY RING 2nd version with BUNCH MERGING Sep 27 13:16:45 2005 ACCSIM v4.0beta. 14

Turn #, time [ms] 200 2,43384814 At injection point BETAx, BETAy 20.714241 20.0015736 ETAx, ETAxp 8.18494606 -3.31139338E-09 Ts, DE0 [MeV] 557326.438 3027.65991 Vrf [kV] 10000. CO bump [mm] 36.162724 -8.35862011E-08 Hits: total, average 0 0 Particles plotted, lost 10010 Real particles in circulating beam: 1.00100001E+13

BETA BEAM DECAY RING 2nd version with BUNCH MERGING Sep 27 13:16:45 2005 ACCSIM v4.0bets.14

Decay ring bunch merging cont'd.

Turn #, time [ms] 2100 46.360405 At injection point BETAx, BETAy 20.714241 20.0015736 ETAx, ETAxp 8.18494606 -3.31139338E-09 Ts, DE0 (MeV) 557326.438 3027.85991 Vrf [kV] 10000. CO bump [mm] 36.182724 -8.35862011E-08 Hits: total, average 0.0 Particles plotted, lost 1001.0 Real particles in circulating beam: 1.00100001E+13

BETA BEAM DECAY RING 2nd version with BUNCH MERGING Sep 27 13:18:45 2005 ACCSIM v4.0bets.14

Turn #, time (ms) 22100 508.745209 At injection point BETAx, BETAy 20.714241 20.0015736 ETAx, ETAxp 8.18494606 -3.31139338E-09 Ts, DEO (MeV) 557326.438 3027.85991 Vrf (kV) 10000. CO bump (mm) 36.182724 -8.35882011E-08 Hits: total, average 0.0 Particles plotted, lost 10010 Real particles in circulating beam: 1.00100001E+13

BETA BEAM DECAY RING 2nd version with BUNCH MERGING Sep 27 13:16:45 2005 ACCSIM v4.0bets.14

On into terra incognita...

Turn #, time (ms) 43254 997.809631 At injection point BETAx, BETAy 20.714241 20.0015736 ETAx, ETAxp 8.18494606-3.31139338E-09 Ts, DE0 (MeV) 557326.438 3027.65991 Vrf (kV) 20000. CO bump (mm) 27.2200241 2.42143869E-08 Hits: total, average 0.0 Particles plotted, lost 2001.0 Real particles in circulating beam: 1.00100001E+13

BETA BEAM DECAY RING 2nd version with BUNCH MERGING and STACKING Oct 7 19:31:01 2005 ACCSIM v4.0beta.14

Turn #, time (ms) 43454 1002.43347 At injection point BETAx, BETAy 20.714241 20.0015736 ETAx, ETAxp 8.18494606.3.31139338E-09 Ts, DE0 (MeV) 557326.438 3027.65991 Vrf (kV) 10000. CO bump (mm) 3.43425199E-08 6.90342858E-08 Hits: total, average 0.0 Particles plotted, lost 2001 0 Real particles in circulating beam: 2.0010001E+13

BETA BEAM DECAY RING 2nd version with BUNCH MERGING and STACKING Oct 7 19:31:01 2005 ACCSIM v4.0beta.14

And on...

Turn #, time [ms] 64881 1497.80945 At injection point BETAx, BETAy 20.714241 20.0015736 ETAx, ETAxp 8.18494606 -3.31139338E-09 Ts, DEO [MeV] 557326.438 3027.85991 Vrf [kV] 10000. CO bump [mm] 3.43425199E-08 6.90342858E-08 Hits: total, average 0.0 Particles plotted, lost 20010 Real particles in circulating beam: 2.0010001E+13

BETA BEAM DECAY RING 2nd version with BUNCH MERGING and STACKING Oct. 7 19:31:01 2005 ACCSIM v4.0beta.14

Turn #, time (ms) 86413 1995.61292 At injection point BETAX, BETAY 20.714241 20.0015736 ETAX, ETAXP 8.18494606 -3.31139338E-09 Ts, DEO (MeV) 557326.438 3027.65991 Vrf (kV) 10000. CO bump (mm) 3.43425199E-08 6.90342858E-08 Hits: total, average 0 0 Particles plotted, lost 2001 0 Real particles in circulating beam: 2.0010001E+13

BETA BEAM DECAY RING 2nd version with BUNCH MERGING and STACKING Oct. 7 19:31:01 2005 ACCSIM v4.0beta.14

Injection and momentum stacking

- Injection sequence
 - Inject off-momentum on dispersion-matched orbit
 - 1/4 turn at 20 MV rf removes momentum offset
 - Collapsing orbit (injection bump + dispersion) helps circulating bunches to clear septum
- To-do for stacking
 - Determine complete merging cycle and evolution to next injection.
 - Look at multiple merges, filling, and accumulated emittances (within computing resource constraints).
- Septum losses ?
 - Accsim has "injection septum" element (w/ proton physics, or can just record hits).
 - Could do pre-processing for more detailed study of septum region with Mars or Geant4.

Decay, tracking, and secondary ions

- Matrix transport + decay: split element matrix to determine decay coordinates.
- User option for secondary ions:
 - 1. The ions are tagged, removed from tracking, and coordinates are exported for external tracking.
 - 2. The ions are tracked until lost, adjusting ΔE coordinate for new reference momentum. At present, tracking in linear lattice only.
- Need to validate tracking with large momentum deviation (cf. FFAG)

2.	3.
5.60548306	5.60146379
557. 326416	838.773071
562.903992	844.355957
938.822632	
926819	
846252	
3811343	
	2. 5.60548306 557.326416 562.903992 938.822632 926819 846252 3811343

Tracking of secondary ions in linear machine (preliminary)

Tracking of secondary ions in linear machine (preliminary)

Code development issues

- Tracking
 - Linear optics + thin multipoles: can model e.g. discrete thin dipoles and quads, but not a complete description.
 - Possibility of all-thin representation... MAD-X "makethin" output is adaptible to Accsim.
 - SNS Orbit code (Accsim's cousin) offers validated thin-multipole routines and a basis for comparison.
 - Thin-multipoles vs. Δp/p ~ 35% ...limitations and computational cost not known.
- Physics
 - Many physics processes to account for -- what can be included and what can be left to other codes?
 - Strahlsim, Mars, Geant4...
 - High-energy ion physics toolkit

Code development issues (cont'd.)

- Accsim as pre- and post-processor for other codes
 - Beta: lattice input, post-decay tracking
 - Strahlsim: use accumulated 3D distributions from Accsim?
 - Event generator for P.I.M. codes (Mars, Geant4)
 - Need to distinguish processes:
 - Transient or cyclic: injection, stacking, filling -- may require "real time" simulation with large numbers of macroparticles
 - Steady-state: slow loss of stored beam -- simulate enough turns to gather statistics
- It may not be possible to cleanly separate physics and tracking
 - Hits arising from slow growth (e.g. bucket losses?) may entail reentry and survival for multiple turns.

Next

- Experimental runs with multiple merge/fill operations, consistent with further ESME study.
- Loading more features and improvements in Accsim
 - 1. Investigate secondary ion tracking method
 - 2. ⇒ Optimized in-element loss detection
 - 3. Better diagnosis and recording of losses
 - 4. Different loss breakdown options, with graphics
 - 5. New aperture input methods, global and by element class
- Use of Beta and Accsim together
 - Exploit the complementarity wherever possible
 - Try to streamline the design/simulation cycle
- Estimate of requirements for Accsim-style macroparticle simulation vs. use of more specialized codes and analytical methods. How to handle stacking/filling with finite resources?
- Monitor the (developing) state of ion physics in Mars and Geant4.