

PS activation and collimation studies

<u>M. Kirk</u>, P. Spiller, J. Stadlmann, C. Omet FAIR Synchrotrons Group GSI Darmstadt

> Beta-beam task group meeting IPN Orsay, 19th November 2007

- PS has recently been refurbished: new coils installed into dipoles (CF magnets).
- Insulation in the old coils had received 10-40 MGy*
- Ineffective area of insulator need only be small ($\sim 1 \, \text{mm}^2$)*
- Lamination in the yoke is also a concern.
- Losses during beta-beam operation will be considerable!
- Physics years: neutrinos and anti-neutrinos, 5 years each.

Radiation dose - simulation

- Require simulation on the most expensive components: magnets.
- Nuclear transport code FLUKA employed.
- Nearly all losses are from beta decay. Approximated to 100%
- Detailed description of geometry: magnet yoke, coil, beampipe and collimators.
- Loss maps of the beta decay daughter nuclei taken from the accelerator tracking code StrahlSim (C. Omet, GSI).

StrahlSim: Losses

He-beam. Decay products tracked to the collimator and beampipe (red & black curves).

StrahlSim: Loss map

He-beam. Angles of incidence (wrt. z axis) along the beamline.

StrahlSim: Losses

Ne-beam. Decay products tracked to the collimator and beampipe (red curves).

StrahlSim: Loss map

Ne-beam. Angles of incidence (wrt. z axis) along the beamline.

StrahlSim: Loss maps

He- and Ne beams. Loss distribution along the machine.

StrahlSim: Losses

He- and Ne beams. Energy distributions of the daughter nuclei over the complete cycle.

Transverse beam profiles

He- and Ne beams in the FLUKA model.

Approximation 1. effect of adiabatic damping represented as an average:

$$\left\langle \beta \gamma \right\rangle_{t} = \frac{\beta \gamma_{inj} (t_{1} + t_{2}) + \frac{1}{2} t_{2} \left(\beta \gamma_{ext} - \beta \gamma_{inj} \right)}{t_{1} + t_{2}} \qquad \left\langle \varepsilon_{y} \right\rangle_{t} = \varepsilon_{inj,y} \frac{\beta \gamma_{inj}}{\left\langle \beta \gamma \right\rangle_{t}}$$

Linear dipole field ramp: Flat bottom time t_1 , acceleration time t_2 .

Approximation 2. Transverse <u>vertical</u> primary beam profile is static and Gaussian with the width given by

$$\Delta Y_{FWHM} = 2\sqrt{\ln(4)\left\langle \varepsilon_{rms,y} \right\rangle_t \left\langle \beta_y \right\rangle}$$

Schematic: Magnet Geometry

Side view of beamline section including a combined function magnet.

FLUKA: Magnet geometry

PS combined function D-magnet. Beam into page.

Vertical cross section through middle of magnet.

PS combined function D-magnet. Beam from left to right.

Horizontal cross section through magnet and top/bottom pancake coil.

PS combined function D-magnet. Beam into page.

Vertical cross section through collimators and coils

at the front of the magnet.

PS combined function D-magnet. Beam from left to right.

PS combined function D-magnet. Beam from left to right.

Insulation around the coils

FLUKA materials

Coil insulation: Epoxy fibre glass resin (4mm thick)

Mainly consists of glass type E (80%). 100% assumed in model.

Fraction of mass

SiO ₂	52-56 %		
Alkaline Oxides	0-2 %		
CaO	16-25 %		
MgO	0-5%		
B_2O_3	5-10%		
Al ₂ O3	12-16%		
TiO ₂	0-0.8%		
Fe ₂ O ₃	0.05-0.4%		
F ₂	0-1%		

Dose rate distribution in the coils

Insulation: bottom horizontal sheet of the top front straight.

¹⁸F⁹⁺ 1.1 GeV/u \rightarrow C collimator.

-5 -10 -15 y [cm] -20 Failure will occur here first -25 -3015 0 5 10 20 25 35 30 x [cm]

Ilustration only!

Dose rates and lifetimes (1)

He-beam pattern: Angular and energy distributions given by StrahlSim.

Preferred dose rate <0.2 MGy/year

Primaries: ⁶Li³, No Collimator

Pencil beam and 2 σ filling the pipe also studied. See legend:

Beta Beams in

□ dY FWHM 1.2cm 0.20 FRONT MIDDLE ■ dY FWHM 0.0cm Left. Left, 0.18 □ dY FWHM 4.0cm Top **Bottom** 0.16 Dose rate [MGy per year] 0.14 0.12 0.10 Front, Front. 0.08 BACK Bottom Top 0.06 Right, Right, Front. Front, 0.04 Top **Bottom Top** Bottom 0.02 ---- --- **-**---0.00 tort.6A tort.72 tort.AO tort.A2 tort.AA tort.AS tort.AT tort.AS fort.50 fort.52 tort.55 tort.51 tort.59 tort.62 tort.65 tort.67 tort.69 fort.70 tort.78 tort.80 tort.60 tort.74 tort.75 #Region of insulation (straight sections of coil only)

Bends in the coils and straights at the back not included.

Dose rates and lifetimes (2)

He-beam pattern: Angular and energy distributions given by Strahlsim.

6 E j

Dose rates and lifetimes (3)

He-beam pattern: Angular and energy distributions given by Strahlsim.

Bends in the coils and straights at the back not included.

G - E (

Dose rates and lifetimes (4)

F-beam pattern: Angular and energy distributions given by Strahlsim code. Mean vertical FWHM of beam during machine cycle is dY.

Bends in the coils and straights at the back: not included.

Dose rates and lifetimes (5)

Beta Beams in EURISOL

F-beam pattern: Angular and energy distributions given by Strahlsim code. Mean vertical FWHM of beam during machine cycle is dY.

Bends in the coils and straights at the back: not included.

Dose rates and lifetimes (6)

F-beam pattern: Angular and energy distributions given by Strahlsim code. Mean vertical FWHM of beam during machine cycle is dY.

Beta Beams in

dY FWHM 0.0cm ¹⁸F⁹⁺, 1m Collimator, C dY FWHM 0.93cm 0.040 □ dY FWHM 4.00cm FRONT BACK MIDDLE 0.035 Top **Bottom** per year] 0.030 0.025 [Mgy | 0.020 Dose rate 0.015 Right, Right, 0.010 Тор Bottom Left, Left. Top **Bottom** 0.005 Bottom Top 0.000 ·', 78 fort.A2 tort.45 Fort.AT tort.A9 in fort.50 401^{4,80} tort.AA tort.AD 0 12 14 15 401. 401. 401. 40 51 59 60 61. tot. tot. tot. tot. to #Region of insulation (straight sections of coil only)

Bends in the coils and straights at the back: not included.

Lifetimes

5

Losses on target geometry (z=18-25m): Error bars due to statistical error; differences 8.2x10⁹ Li-ions/s 1.2x10⁹ F-ions/s taken in reflection asymmetry.

Lifetimes

- Losses on target geometry (z=18-25m):
- 8.2x10⁹ Li-ions/s 1.2x10⁹ F-ions/s
- Error bars show effect of changing the vertical beam width, incl. statistical error.
- Max. and Min. taken from min. dose rate for vertical dY_{FWHM}:
- Li: 0, 1.2, 4 cm F: 0, 0.93, 4 cm

Activation – ¹⁸F, Pb collimator

Continuous irradiation at 1.2×10^9 Ptcls/s (over z=18-25m) for 5 years. Residual equivalent dose rate map (mSv/hour) 1 hour after shut down.

Horizontal slice through beampipe. Dimensions in cm.

Activation – ¹⁸F, Pb collimator

Equivalent dose rate 1 day after shut down.

F - F - (

Activation – ¹⁸F, C collimator

Continuous irradiation at 1.2x109 Ptcls/s (over z=18-25m) for 5 years. Equivalent dose rate (mSv/hour) 1 hour after shut down.

> 300 0.398 0.158 200 0.0631 100 0.0251 х 0.01 0 0.00398 -1000.00158 -200 0.000631 0.000251 -300 - 0.0001 100 200 300 400 500 -200 -100Z [cn] 07.00.00 SOURCE A STORE OF SOLES AND SOLES AND SOLES AND AND A STORE OF SOLES

F beam. Carbon Collinator. After 1 hour.

Beta Beams in

Dose Equiv. nS/h

Horizontal slice through beampipe.

Activation – ¹⁸F, C collimator

Equivalent dose 1 day after shut down.

62 - ES 1

Activation – ¹⁸F, no collimator

Continuous irradiation at 1.2x109 Ptcls/s (over z=18-25m) for 5 years.

Equivalent dose (mSv/hour) 1 hour after shut down.

Horizontal slice through middle of geometry (i.e. beampipe). Dimensions in cm. Coils and yoke overlaid for clarity.

Activation – ¹⁸F, no collimator

Beta Beams in **EUR SOL**

Reduction of equivalent dose rate over time for ¹⁸F-beam

on D-magnet and beampipe w/o collimation.

Dose rates in table below are those at the cubic volume:

Z: 300-350cm, X: 0-50cm, Y: 0-50cm

Residual dose rates

(i.e. towards the back of the magnet where the dose is highest, and close to pipe, in between coils).

	Equivalent dose [µSv/hour] after			
Collimator	1 hour	1 day	1 week	30 days
None	47.8	4.16	4.16	2.09
Carbon	63.1	6.31		
Lead	91	12.1		

Values are upper level estimates read from the colour scale in the previous dose rate maps and are therefore rough estimates!

Summary

- Physical prompt dose rates and therefore operational lifetimes of the coils in the PS (D-dipole) have been estimated using the FLUKA transport code.
- The functional lifetimes of coil insulation for all cases studied appear to be long enough. Minimum of 60 years with no collimation.
- Residual equivalent dose rates have also been calculated for Ne operation after 5 years of continuous operation. Cooling times required to reach safe radiation levels for maintenance appear to be reasonable.
- Carbon is the most suitable for collimation of the materials considered since it results in the lowest dose rates in the coil insulation and has the least activation.

Outlook

- The lamination in the magnet needs to be investigated, particularly for ¹⁸F hitting the right side of the D-magnet, likewise for ⁶Li hitting left side of F-magnet.
- More realistic shape for the collimators.
- The activation of the water used for cooling magnet and collimators?