Shielding design for RCS

Matteo Magistris, Marco Silari, Stefania Trovati CERN

6th beta-beam task meeting 19 November 2007

Introduction

- Ambient dose equivalent rates: the CERN guidelines have been used.
- Beam intensities:
 - ⁶He: 9.32*10¹¹ particles/bunch
 - ¹⁸Ne: 2.62*10¹¹ particles/bunch
- Cycle rate 10 Hz
- For the yearly ion throughput the duty cycle has been considered: 1/3 for ⁶He and 1/1.8 for ¹⁸Ne.
- Losses: injection, decay, RF capture and acceleration losses.
- Shielding calculations: Monte Carlo simulations and analytical models.

Paris, 19/11/2007

Radiation areas: classification

Area classification	Ambient dose equivalent limit	Ambient dose equivalent rate guideline
Non-designated area	1 mSv y-1	0.5 µSv h⁻¹
Supervised radiation area	6 mSv y⁻¹	3 µSv h⁻¹
Simple controlled radiation area	20 mSv y-1	10 µSv h⁻¹

Methods

- Monte Carlo calculations (FLUKA) of ambient dose equivalents at 4 representative energies.
- Analytical calculations of attenuation lengths in concrete.
- Analytical calculations of shielding thicknesses for ambient dose equivalent rate guidelines.

	Energy	Attenuation	Source term H ₀
	MeV	Length	Sv m ⁻² per primary
		g cm ⁻²	
Не	100	61.6 ± 0.7	(1.68 ± 0.12)E-015
Не	200	73.9 ± 0.7	(3.14 ± 1.48)E-015
Не	400	94.1 ± 0.2	(3.69 ± 0.09)E-015
Не	787	108.5 ± 0.9	(4.51 ± 0.14)E-015
Ne	100	58.4 ± 0.7	(1.15 ± 0.10)E-015
Ne	250	78.3±1.1	(5.79 ± 0.36)E-015
Ne	640	102.9±0.3	(9.72 ± 0.09)E-015
Ne	1650	113.7 ± 0.4	(12.22 ± 0.08)E-015

FluKa simulations

- Beam on a cylindrical copper target (r=10 cm ; dz= 0.5 cm)
- 2 mm thick iron beam pipe
- Air tunnel: r = 2 m
- Concrete (ρ = 2.35 g cm⁻³) layer of 5 m, segmented in 20 cm slabs

Analytical calculations

The MC calculations can be parametrized using an exponential function of the form:

$$H = \frac{H_0}{(d+2)^2} \exp(-\frac{d}{\lambda})$$

From the fit we have H₀ (H extrapolated at 1 m distance from the source) and λ .

Loss assumptions

- Injection \rightarrow 30% of the incoming beam
- RF capture and acceleration \rightarrow ~ 16% ⁶He, ~24 % ¹⁸Ne
- Decay \rightarrow ~ 3.8 % ⁶He, ~1.4 % ¹⁸Ne
- Beam-gas interaction \rightarrow no losses
- Extraction \rightarrow no losses

Injection losses (point losses)

30% of the beam is lost against the injection septum:

- ⁶He

 $0.3^{(9.32^{10^{12}})/0.7 \approx 4^{10^{12}}$ part/s lost

Injection losses

Ambient dose	⁶ He	¹⁸ Ne
equivalent rate limits (µSv h ⁻¹)	Shielding thickness (cm)	Shielding thickness (cm)
0.5	345	310
3	300	270
10	275	240

Paris, 19/11/2007

Decay losses

- Decay losses are distributed over straight sections and dipoles in the arcs (120 m).
- 3 energy intervals: the shielding is calculated for the sum of the 3 contributions.

 \frown

• Analytical calculation:

$$H^* = \frac{H_0 \cdot \% (lost \ part) \cdot 3600}{(d+2)^2} \cdot \frac{10}{120} \cdot \exp(-\frac{d}{\lambda})$$

Approximation: a uniform beam loss of 1 W/m is equivalent to a point loss of 10 W every 10 m (in terms of shielding).

Paris, 19/11/2007

Decay losses %

	100-200MeV	200-400MeV	400-787MeV
He	1.00%	0.80%	1.80%
	100-250MeV	250-640MeV	640-1650MeV
Ne	0.45%	0.20%	0.70%

Ambient dose	⁶ He	¹⁸ Ne
equivalent rate guidelines (µSv h ⁻¹)	Shielding thickness (cm)	Shielding thickness (cm)
0.5	390	375
3	325	305
10	275	255

•The shielding provides an attenuation factor of 10⁻⁵ of the ambient dose equivalent rate.

RF capture and acceleration losses

All losses are concentrated in 6 points: QP1,QP2,QP3,QP4,QP5,QP6

✓3 energy intervals: the shielding is calculated for the sum of the 3 contributions.

⁶ He	100-200 MeV	200-400 MeV	400-787 MeV
QP1	1.00%	0.35 %	0.35 %
QP2	1.50%	1.00 %	1.40 %
QP3	0.50%	0.30 %	0.30 %
QP4	1.50%	0.50 %	1.40 %
QP5	1.20%	0.70 %	1.30 %

¹⁸ Ne	100-200	250-640	640-1650
	MeV	MeV	MeV
QP1	2.35%	1.40 %	1.30 %
QP2	0.80%	0.95 %	0.30 %
QP3	1.50%	2.75 %	1.50 %
QP4	0.90%	0.75 %	0.40 %
QP5	2.85%	1.90 %	1.05 %
QP6	1.00%	0.75 %	0.50 %

RF capture and acceleration losses

	Limits	Shield thickness (cm)	Shield thickness (cm)
	µSv h⁻¹	Не	Ne
QP1	0.5	430	515
	3	360	440
	10	315	390
QP2	0.5	480	470
	3	410	400
	10	365	350
QP3	0.5	420	525
	3	350	450
	10	305	405
QP4	0.5	480	470
	3	405	400
	10	360	350
QP5	0.5	475	510
	3	405	435
	10	360	390
QP6	0.5	-	475
	3	-	405
	10	-	355

RF capture and acceleration + decay losses

	Limits	Chield this has a complete		
	μSv h⁻¹	Shield thickness (cm) He	Smeid thickness (cm) Ne	
QP1	0.5	440	515	
	3	370	440	
	10	325	390	
QP2	0.5	485	470	
	3	415	400	
	10	365	355	
QP3	0.5	435	525	
	3	365	455	
	10	320	405	
QP4	0.5	485	475	
	3	410	405	
	10	365	355	
QP5	0.5	480	510	
	3	410	440	
	10	365	390	
QP6	0.5	-	480	
	3	-	410	
	10	-	360	

•For a 450 cm shielding thickness we have \sim 3 µSv h⁻¹.

•The shielding provides an attenuation factor of 10⁻⁸ of the ambient dose equivalent rate.

Summary of results of simulations

- <u>At injection</u> the worst case is represented by ⁶He. For a 3 μ Sv h⁻¹ limit the minimum shielding thickness must be of 3 m.
- During the cycle the worst case for <u>decay losses</u> is represented by ⁶He. For a $3 \mu Sv h^{-1}$ limit the minimum shielding thickness must be of 3.25 m over a 10 m

section of the tunnel.

- During the cycle the worst case for <u>RF capture and acceleration losses</u> is represented by:
 - ⁶He for QP2 and QP4. For a 3 μ Sv h⁻¹ limit the minimum shielding thickness must be of 4.10 m and 4.15 m respectively.
 - ¹⁸Ne for QP1, QP3, QP5 and QP6. For a 3 μSv h⁻¹ limit the minimum shielding thickness must be of 4.40 m, 4.50 m, 4.35 m and 4.05 m, respectively.
- For <u>RF capture and acceleration losses + Decay losses</u> almost the same thicknesses must be used: the contribution from decay is negligible with respect to the RF capture and acceleration one.

Calculation uncertainties

- <u>Sources</u>: nuclear models implemented in the code; ion intensities and loss intensities; concrete density; intrinsic uncertainty in the fit model; uniform beam loss approximation; target material; reference energies...
- A factor of 3 in dose rate intensity should be considered for safety reasons.
- We therefore recommend to add 1 more attenuation length to every shielding thickness for a safety margin.

Summary

Location	From calculations	Recommended
Injection septum	3 m	3.25 m
Arcs	3.25 m	4.70 m
QPs (2 & 4)	4.10; 4.15 m	4.55; 4.60 m
QPs (1; 3; 5; 6)	4.40; 4.50; 4.05; 4.35 m	4.90; 5.00; 4.55; 4.85 m

Outlook

- Report on preliminary shielding design
- Start study of the PS shielding
- RCS activation studies: looking for the

right code for the calculations

Acknowledgments

This work was supported by the Marie Curie

Project nº 20174 (RADENV).