

Radiation studies on PS main magnets

M. Kirk, P. Spiller, J. Stadlmann, C. Omet FAIR Synchrotrons Group GSI Darmstadt

> Beta-beam task group meeting Saclay, 19th May 2008

- Description of the FLUKA simulation model:
 - * Geometry,
 - * Transverse beam profile,
 - * Loss distributions: intensity, angles and energy,
 - * Materials of the important components.
- Review of the physical dose rates in the coil insulation.
- Reminant dose rates.

Schematic: Magnet Geometry

Side view of beamline section including a combined function magnet. (Not to scale.)

Beta Beams in

FLUKA: Magnet geometry

PS combined function D-magnet. Beam into page.

Vertical cross section through middle of magnet.

Coils of the CF magnet

G 5 1

Two "pancake coils" per pole shoe. Approx. \rightarrow Straight.

PS combined function D-magnet. Beam from left to right.

Horizontal cross section through magnet and top/bottom pancake coil.

PS combined function D-magnet. Beam into page.

Vertical cross section through collimators and coils

at the front of the magnet.

PS combined function D-magnet. Beam from left to right.

PS combined function D-magnet. Beam from left to right.

Tunnel cross section

Dashed line to right of beampipe indicates the yoke is closed on the "inside". (Beam into page.)

Transverse beam profiles

He- and Ne beams in the FLUKA model.

Approximation 1. effect of adiabatic damping represented as a time-average:

$$\left\langle \beta \gamma \right\rangle_{t} = \frac{\beta \gamma_{inj} (t_{1} + t_{2}) + \frac{1}{2} t_{2} \left(\beta \gamma_{ext} - \beta \gamma_{inj} \right)}{t_{1} + t_{2}} \qquad \left\langle \varepsilon_{y} \right\rangle_{t} = \varepsilon_{inj,y} \frac{\beta \gamma_{inj}}{\left\langle \beta \gamma \right\rangle_{t}}$$

Linear dipole field ramp: Flat bottom time t_1 , acceleration time t_2 .

Approximation 2. Transverse <u>vertical</u> primary beam profile is static and Gaussian with the width given by

$$\Delta Y_{FWHM} = 2 \sqrt{\ln(4) \left\langle \varepsilon_{rms,y} \right\rangle_t \left\langle \beta_y \right\rangle}$$

StrahlSim: Losses

He-beam. Decay products tracked to the collimator and beampipe.

StrahlSim: Loss map with collimator

He-beam. Angles of incidence (wrt. z axis) on the beampipe.

StrahlSim: Losses

Ne-beam. Decay products tracked to the collimator and beampipe (red curves).

StrahlSim: Loss map

Ne-beam. Angles of incidence on the beampipe (wrt. longitudinal axis)

Beta Beams in

StrahlSim: Loss maps

He- and Ne beams. Loss distribution along the machine.

StrahlSim: Losses (1 of 2)

Beta Beams in

See next slide! ...

StrahlSim: Losses (2 of 2)

He- and Ne beams. Energy distributions of the daughter nuclei over the complete cycle.

Materials

Coil insulation: Epoxy fibre glass resin (80% glass E) Coil conductor: copper Cooling of coils: water Tunnel wall: concrete Magnet supports: steel 1 Beampipe: steel 2

Insulation: Mainly consists of glass type E.

	Fraction of mass
SiO ₂	52-56 %
Alkaline Oxides	0-2 %
CaO	16-25 %
MgO	0-5%
B ₂ O ₃	5-10%
Al ₂ O3	12-16%
TiO ₂	0-0.8%
Fe ₂ O ₃	0.05-0.4%
F_2	0-1%

Dose rate distribution in the coils

Insulation: bottom horizontal sheet of the top front straight. $^{18}F^{9+}$ 1.1 GeV/u \rightarrow C collimator.

Ilustration only!

Bends in the coils and straights at the back not included.

GSİ

Lifetimes

Losses on target geometry (z=18-25m): 8.2x10⁹ Li-ions/s 1.2x10⁹ F-ions/s

Error bars due to statistical error; differences taken in reflection asymmetry.

Orientation of yokes along the PS

1=Inside 0=outside 9=end of section (period) first 9=end of sec01.

GSI

Beta Beams in

Loss map of Helium ...

... Loss maps: zoom without collimator

Beta Beams in

Reminant Dose maps (1 of 8)

Continuous irradiation over geometry shown with 7.1x10⁹ ⁶Li ions per second for 3 months **Cooling time: 1 hour**

Ξ

Beta Beams in

Horizontal slice through middle of beampipe

x

Reminant Dose maps (2 of 8)

Continuous irradiation over geometry shown with 7.1x10⁹ ⁶Li ions per second

Beta Beams in

D

Cooling time: 1 day

Ξ

Horizontal slice through middle of beampipe

х

Reminant Dose maps (3 of 8)

Continuous irradiation over geometry shown with 7.1x10⁹ ⁶Li ions per second

Beta Beams in

D)

Cooling time: 1 week

Ξ

Horizontal slice through middle of beampipe

Reminant Dose maps (4 of 8)

Continuous irradiation over geometry shown with 7.1x10⁹ ⁶Li ions per second

Cooling time: 30 days

Horizontal slice through middle of beampipe

Summary

- Physical prompt dose rates in the coil insulation look tolerable as concerns their functional lifetime.
- Maintenance of the PS appears to be realistic as concerns the reminant dose rates in within the tunnel.

Outlook

- He operation: The dose rates in the lamination in the Fe should be investigated since heavy losses occur on the closed side of the yoke.
- Activation: Ne operation has yet to be looked at.
- Activation of air in the tunnel.
- Activation in the surrounding soil.

