

Collimation and absorption in the decay ring

A. Fabich, CERN AB-ATB

3rd beta-beam task meeting, GSI, May 2006

Collimation:

- Beam halo
 - Similar to stable ion collimation
- Momentum collimation
 - Longitudinal phase space increase after merging
- Decay products (beta-beam principle)
 - in arcs (absorption)
 - in straight section (extraction)
- Normal operation
 - Protect beam elements (especially SC magnets)
- Irregular operation (failure of active elements)
 - Beam dump

Beta-beam scenario compared

with LHC proton/lead ion operation

	Beta-beam		LHC	
	He ⁶	Ne ¹⁸	proton	Lead ion
Relativistic y	100	100	7461	2964
T/nucleon (GeV)	93	93	7000	2759
T/ion (GeV)	555	1660	7000	574 10 ³
Injected ions	9 10 ¹²	4.3 1012	3.2 1014	4 1010
$\tau_{\text{cycle}}(s)$	6	3.6	hours	hours
Number of stored ions	9.71 1013	7.4 1013	3.2 1014	4 1010
Stored beam energy (MJ)	8.8	19.7	362	3.8

Beam intensities (2)

- Stored energy
 - LHC refers to proton operation.

• "Stored energy" is most relevant for irregular operation.

Particle turnover

- 810 kJ respect. 1150 kJ beam energy/cycle injected \rightarrow ejected
 - All ions have to be removed again
 - either as parent or daughter ion

3rd beta-beam task meeting, GSI, May 2006

Energy deposition on collimators

Beta-beam:

Decay losses are distributed in time \rightarrow 11 W/m energy loss

- Decay deposition in arcs: protect SC dipoles from quench caused by deposition accumulated after drift (quench limit 10W/m)
- Decays accumulated along straight section: 300 or 400 kJ dumped per cycle (50 or 120 kW average) via extraction system at end of straight section
- Momentum collimation at/after merging process:
 - Cycle average: 62 or 230 kW (6 resp 3.6 s)
 - Process average: 1.2 or 2.8 MW (0.3 s, continuos collimation during bunch compression)
- Power deposition on LHC collimators
 - Typical (τ_{beam} = 10 hours): 10 kW average
 - Peak specifications: 100 kW over seconds or 500 kW peak

Momentum collimation

- Beam size on the collimator front face
 - 0.5 mm x 7 mm resp. 1 mm x 14 mm

- Single- or multi stage collimation system
 - Increased impact parameter allows to think about a single stage system
- Minimum collimation time given by revolution time in synchrotron phase space: lasts about ~1000 turns in decay ring (=23 ms)
 - Requires kicker system
 - Increased impact parameter increases power deposition up to several Megawatt peak
- Longer times only allowed by continuous collimation during process of merging and/or bunch compression (minimum time required about 300 ms, can be extended up to cycle length)

EURISOL Design Study

¹⁸Ne fragmentation products:

- Primary cross sections are highest in the region of ΔZ =-1 to -3, ΔA =-1 to -3
 - Momentum/charge will change dramatically, eases separation
- With the light ions used the probability is very small to have fragmentation ions within the acceptance
 - Dispersion region allows to dump the fragmentation ions
 - Requires tracking simulation to locate hot spots of deposition
- Even better situation for ⁶He due to lower A and Z

Absorb energy deposition

- accumulated from drift space in the arcs
- protect SC dipoles
- about 60 W per absorber
- Antoine showed the required aperture layout to allow perpendicular ion impact at absorber front face (maximized impact parameter)
 - Requires large dipole aperture > 8 cm
 - Good field region smaller (4cm)
- 1 meter long carbon jaws absorb major part of primary ions
 - Simulated primary proton impact is absorbed down to the percent level.

Immediate steps required to validate concepts:

- Momentum collimation
 - Maximize impact parameter by going to the limits of peak deposition power
 - Simulate fragmentation production at small impact parameter
 - particle tracking downstream for fragment deposition pattern

Absorbers

- 1 meter carbon is reasonable to reduce energy deposition in arcs
- Dipole design with large aperture, relax on good field region
- Study impedance effect on beam

