# ELECTRON COOLING BEFORE THE RCS

#### CAN THE BEAMS BE COOLED TRANSVERSELY IN 0.1 S?

ANSGAR SIMONSSON 22 MAY 2006

### ACCUMULATION

IN THE PREVIOUS MEETING WE DISCUSSED USING A RING TO ACCUMULATE IONS WITH ELECTRON COOLING AT 100 MEV/U. CALCULATIONS OF ELECTRON COOLING ARE ESSENTIAL FOR ESTIMATES OF ACCUMULATION WITH 0.1 S BETWEEN FACH INJECTION.

HOWEVER, THIS TALK IS ABOUT A

CONTENTED TO THEFE FUT THE OF THE

#### PROBLEM

MULTITURN INJECTION IN THE RCS GIVES 80–100  $\pi$  MM MRAD HORISONTAL EMITTANCE. HOWEVER, DUE TO THE PS ACCEPTANCE LIMIT THE EMITTANCES HAVE TO BE BELOW

33 ∑3  $16.4 \ \pi \ \text{MM} \ \text{MRAD} \\ 8.8 \ \pi \ \text{MM} \ \text{MRAD}$ 



SCENARIO 20 CYCLES DURING 2 S, THEN 5 S PAUSE 10 HZ LINAC → COOLER RING → RCS → PS 100 MEV/U 100 MEV/U 300 MEV/U

ACCUMULATION SEVERAL LINAC BUCHES ARE MERGED IN THE COOLER RING WITH ELECTRON COOLING FOR EVERY BUNCH SENT TO THE RCS



#### ELECTRON COOLING

FAST FOR COLD IONS, SLOWER WHEN ELECTRON AND ION VELOCITIES DIFFER

NOT DEPENDENT ON ION CURRENT

MUCH FASTER LONGITUDINALLY THAN TRANSVERSELY

1/COOLING TIME ~  $Q^2/A \times I_E / \Theta^3$ , where  $\Theta$ is the angle

BETWEEN IONS AND ELECTRONS

Before cooling After cooling Intensity Emittance

# ELECTRON COOLER

THE COOLING SECTION IS ONE TO SEVERAL METERS LONG

UP TO 1 A ELECTRON CURRENT

55 KV FOR 100 MEV/U

LARGE  $\beta$ -FUNCTIONS GIVE FAST COOLING, 1/COOLING TIME ~ 1/ $\Theta^3$  ~  $\beta^{1.5}$ 



## SIMULATIONS OF TRANSVERSE COOLING

INPUT: HOLLOW ION BEAMS SO ALL IONS HAVE THE SAME TRANSVERSE EMITTANCE

#### SIMPLE TRACKING WITH 3 D COOLING Force and electron beam space Charge

INTRABEAM SCATTERING ISN'T Included. So the results for the Coldest ions are wrong





0.1 S COOLING 10% ELECTRON COOLER 1 A ELECTRON CURRENT  $\beta X = 16 M$  $\varepsilon X = 100 \pi MM$ MRAD

β<sub>x</sub>, β<sub>y</sub> = 16.00, 5.00 m D = 0.00 m $Q_x, Q_y = 5.70, 5.55$  $l_{oosl} = 208.00 \text{ m}$ te-bace = 20.0 mm partic les = 5000 turns = 62000  $m_i = 18$ q; = 10 E<sub>acol</sub> = 55.000 keV E, = 55.000 keV  $l_s = 1.000 \text{ A}$  $\theta_x, \theta_y = 0.00, 0.00 \text{ mmad}$ B<sub>2</sub> = 0.025 T x<sub>00.2</sub>, y<sub>012</sub> = 40.00, 14.00 mm Δp/p<sub>onx</sub> = 5.0000 %. force = '1'  $\theta_{cell} = 0$ 

SIMCOOL 19-MAY-106 13:21:58





#### SIMCOOL 19-MAY-106 13:21:58

 $\beta_x, \beta_y = 16.00, 5.00 \text{ m}$ D = 0.00 m Q., Q. = 5.70, 5.55 least = 206.00 m toban = 20.0 mm particles = 5000 turns = 62000 m<sub>i</sub> = 18 q; = 10 E<sub>scod</sub> = 55.000 keV E, = 55.000 keV  $l_{x} = 1.000 \text{ A}$  $\theta_{y}, \theta_{y} = 0.00, 0.00 \text{ mead}$ B<sub>2</sub>=0.025 T x<sub>ee</sub>, y<sub>ee</sub> = 40.00, 14.00 mm Δp/p<sub>ex</sub> = 5.0000 %. force = '1' θ\_\_\_\_= 0

$$\begin{split} x_{xye} \; y_{zw} &= -0.708, \; -0.098 \; mm \\ Ap/P_{Ava} &= -0.0002 \\ x_{ouv} \; y_{ouv} &= 28.317, \; 9.941 \; mm \\ \epsilon_{w} \; \epsilon_{y} &= 49.995, \; 19.599 \; mm \; mtad \\ &\Delta p/P_{Bva} &= 2.2084 \; \%_{o} \end{split}$$

 $18 NE^{10+}$ 0.1 S COOLING 10% ELECTRON COOLER 1 A ELECTRON CURRENT  $\beta X = 16 M$   $\epsilon X = 100 PI MM$   $M_{m_1}^{3m_2} S_{m_2}^{000} S_{m_1}^{0003} mm$  $\epsilon_{n} \epsilon_{n} \epsilon_{n} \epsilon_{n} \epsilon_{n} \epsilon_{m}^{3m_2} \epsilon_{m} \epsilon_{m}^{3m_2} \epsilon_$ 

#### 6HE2+ VS 18NE10+

1/COOLING TIME ~ Q<sup>2</sup>/A (THEORY) OR 1/COOLING TIME ~ Q<sup>1.7</sup>/A (CRYRING MEASUREMENTS)

<sup>18</sup>NE<sup>10+</sup> / <sup>6</sup>HE<sup>2+</sup>= 5 – 8, COOLING OF NEON IS MUCH FASTER

SPACE CHARGE TUNE SHIFT  $\rightarrow$  DQ = -0.022 / -0.14





6HE2+ 0.1 S COOLING 10% ELECTRON COOLER ELECTRON JRRENT CI  $\beta X = 16 M$ εX = 100 PI MM MRAD

SIMCOOL 19-MAY-106 13:30:25

#### CONCLUSION

A COOLING RING WITH MULTITURN INJECTION BEFORE THE RCS CAN DRAMATICALLY REDUCE THE HORIZONTAL EMITTANCE OF <sup>18</sup>NE<sup>10+</sup> WITH 0.1 S COOLING.

THE <sup>6</sup>HE<sup>2+</sup> CASE IS MUCH MORE DIFFICULT, SINCE THE COOLING TIME IS LONGER AND THE SPACE CHARGE TUNE SHIFT LARGER.











SIMCOOL 17-MAY-106 19:43:40

$$\begin{split} \beta_{tri} \beta_{y} &= 13.00, 5.00 \text{ m} \\ D &= 0.00 \text{ m} \\ Q_{zri} Q_{y} &= 5.70, 5.55 \\ I_{cost} &= 10.00 \text{ m} \\ I_{abase} &= 20.0 \text{ mm} \\ potticles &= 2000 \\ turins &= 620000 \\ m_{ri} &= 18 \\ q_{i} &= 10 \\ E_{scot} &= 55.000 \text{ keV} \\ E_{s} &= 55.000 \text{ keV} \\ I_{a} &= 1.000 \text{ A} \\ \theta_{zri} \theta_{y} &= 0.00, 0.00 \text{ mrad} \\ B_{z} &= 0.070 \text{ T} \\ \pi_{mer}, \pi_{mer} &= 5.000 \text{ %e} \\ force &= '1' \\ \theta_{rest} &= 0 \end{split}$$

$$\begin{split} x_{xvp} \; y_{zv} &= 0.739, \; 0.022 \; mm \\ \Delta p/p_{vv} &= 0.0035 \\ x_{ouv} \; y_{ouv} &= 22.498, \; 9.958 \; mm \\ \varepsilon_{v} \; \varepsilon_{z} &= 39.377, \; 19.594 \; mm \; mind \\ \Delta p/p_{mv} &= 2.2374 \; \%_{o} \end{split}$$

20

20

40

40

18Ne10+ 0.1 s cooling 10 m long electron cooler 1 A electron current betax = 13 m epsx = 80 pi mm mrad

 $\begin{array}{l} x_{x_{100}} \; y_{z_{10}} = 0.030, \; -0.031 \; mm \\ \Delta p' p_{cys} = -0.0258 \\ x_{cuto} \; y_{cut} = 9.839, \; 4.583 \; mm \\ \epsilon_{x_{0}} \; \epsilon_{y} = 7.730, \; 4.195 \; mm \; mt \; ad \\ \Delta p' p_{cut} = 1.1930 \; \% o \end{array}$ 





18Ne10+ 0.1 s cooling 5 m long electron cooler 1 A electron current betax = 16 m epsx = 50 pi mm mrad

SIMCOOL 18-MAY-106 21:53:31

 $\begin{array}{l} \beta_{x}, \beta_{y} = 16.00, 5.00 \mbox{ m}\\ D = 0.00 \mbox{ m}\\ Q_{x}, Q_{y} = 5.70, 5.55\\ I_{ass} = 50.00 \mbox{ m}\\ r_{t-base} = 20.0 \mbox{ mm}\\ partic kes = 1000\\ turns = 62000\\ turns = 62000\\ turns = 62000\\ turns = 55.000 \mbox{ keV}\\ k_{z} = 10\\ E_{x} = 55.000 \mbox{ keV}\\ k_{z} = 1.000 \mbox{ A}\\ \theta_{x}, \theta_{z} = 0.00, 0.00 \mbox{ mm}\\ \theta_{y}, \theta_{y} = 0.00, 0.00 \mbox{ mm}\\ \Delta p P_{max} = 5.000 \mbox{ we}\\ force = '10'\\ \theta_{max} = 0 \end{array}$