Some initial thoughts on the decay-ring RF system

Erk Jensen

AB/RF

Setting the scene:

• Ring circumference: 6911.6 m = 23.05 µs

Harmonic numbers: 40 MHz: 924

80 MHz: 1848

• Bunch charge: $10 \cdot 3.7E12 e = 5.9 \mu C (!)$

Beam current:
237 A during batch (20 bunches, 500 ns),
5.1 A average (924 buckets, 23 μs).

Problems: very heavy and very transient beam loading!

... now imagine a cavity with (just) a 100 k Ω shunt impedance!

- For short bunches, the RF component of the beam current is I_B = 474 A. (compare: LHC beam in PS: 2.1 A)
- In 100 kΩ, this current would induce an RF voltage of 47 MV in steady state!
- Of course, for a high Q cavity, this steady state would not be reached during 20 bunches, but the induced voltage would behave (solution periodic with 23 μ s) like:

Induced voltage

assuming $R = 100 \text{ k}\Omega$ and Q = 4000

time in ns

It should not surprise that the average induced voltage is around 1 MV, i.e. $100 \text{ k}\Omega \cdot 10.2 \text{ A}$

But: what about the power?

 However, if these 100 kΩ were real, the power lost in to them would be

 $0.5 \cdot 10.2 \, \text{A} \cdot 1.02 \, \text{MV} = 5.2 \, \text{MW}$

... which of course would mean that the beam power would be lost rapidly!

(20 MJ are stored in the beam)

 ... and if it were a reactive impedance? Then the beam could induce by itself the voltage necessary! From the power balance this works, but it would make the beam (Robinson) unstable.

For example:

- Q: 20 000, R: 500 k Ω , V_{gap} : 300 kV, I_B : 474 A
- f: 40 MHz (h: 924), beam on 20 periods (500 ns)
- result: f_0 : 39.218 MHz
- Integrated phase slip: (40-39.218) · 0.025 · 904 turns = 17.67 turns; chose closest integer (18) ...
- ... so in absence of beam, feed f_{opt} : 39.203 MHz!
- The RF power amplifier has to deliver 90 kW in this example.

Blue: phase of drive current in units of $\boldsymbol{\pi}$ (corresponding to frequency offset)

Green: gap voltage in units of 300 kV Red: total current in units of 474 A

- Not conclusive yet only first ideas more work is needed!
- The heavy transient beam loading is unprecedented.
- Since there is no net energy transfer to the beam, the problem might be solved using a linear phase modulation in the absence of the beam, mimicking detuning - this could reduce gap transients.
- A high Q cavity (S.C.?) would be preferable.