

General status of RP studies and investigations on the Decay Ring

S. Trovati, M. Magistris CERN

CERN - 27 March 2009 - 9th bb task meeting

Summary

- Decay Ring:
 - Residual dose rates during maintenance
 - Airborne activity released in the environment
 - Produced radionuclides
- Status of RP studies:
 - Residual dose rates during maintenance
 - Airborne activity released in the environment

Decay Ring

- Only decay losses.
- Bumps and arcs.
- Total number of decays/s in the DR:

⁶He: 6.75E11 ($\frac{\text{total decays}}{\text{s}}$) ¹⁸Ne: 2.48E11 ($\frac{\text{total decays}}{\text{s}}$)

Arc lattice cell: D-A-D-A-Q-A-D-A-D; (D=dipole, A=absorber, Q=quadrupole)
Arc entrance cell: D-drift(~ 20 m)-Q

Layout for FP7

Design	1
<i>r</i> (aperture)	60
b_3	-0.90
b_5	-0.73
b_7	0.67
b_{g}	-0.25
<i>b</i> ₁₁	0.38
Bss (T)	5.95
Gap in midplane (mm)	8.9
φ_1	8.500
φ_2	35.4
φ_3	66.3
$arphi_4$	10.2
φ_5	51.00
r1,r2 (mm)	60,76
Ncon	3,3,1,11,7
Tot Ncon	25
Collars (mm)	30
Copper wedge #1 (degrees)	0-8.5
Copper wedge #2	14.2-35.4
Copper wedge #3	41.1-66.3
Copper wedge #4	0-10.2
Copper wedge #5	26.6-51.0
Yoke (mm)	180
Sector 1 (degrees)	8.5-14.2
Sector 2	35.4-41.1
Sector 3	66.3-68.2
Sector 4	10.2-26.6
Sector 5	51-61.4

NO OPEN MID-PLANE: CABLES INSTEAD!

ARC DIPOLES & QUADRUPOLES

Material compositions*

		Р	Cu	Nb	Liq. He	Kapton	Ti
		(g cm ⁻³)	Volume	Volume	Volume	Volume	Volume
			Fraction	Fraction	Fraction	Fraction	Fraction
			%	%	%	%	%
Dipole	NbTi(in)	6.1	48	10	12	13	17
Dipole	NbTi(out)	7.6	47	9	11	17	16
Quadrupole	NbTi(in)	7.0	63	7	10	9	11
Quadrupole	NbTi(out)	6.3	53	8	10	15	14

•For dipoles: copper wedges implemented separately from cables.

- •For quadrupoles: compound material that includes copper wedges into cables.
- •Yoke material composition: 98% iron, 1% nichel, 0.4% manganese, 0.1 % silicon,
- 0.1% carbonium,).2 % copper.
- •Dipole length: 5.687 m
- •Quadrupole length: 2 m
- •Absorber length: 1 m

*Courtesy of F. Cerutti (specifications by J. Miles - N. Mokhov)

DR losses

Residual Ambient Dose Equivalent Rate at 1 m from the beamline (mSv h⁻¹)

	11	1h		1d		1w	
BOIML T	⁵He	¹⁸ Ne	۴He	¹⁸ Ne	⁶ He	¹⁸ Ne	
1 st Q- 1 st BN2	12	0.72	6	0.36	3.6	0.18	
2 nd Q	1.5	21.6	0.6	9	0.45	5.4	
3 rd Q - 1 st BN3	3	1.08	1.5	0.36	0.75	0.27	
4 th Q	1.5	3.6	0.6	1.62	0.45	1.08	
2 nd BN3 - 7 th Q	90	1.8	60	1.08	30	0.54	
8 th Q	1.5	9	0.6	3.6	0.45	0.162	
5 th Q	0.3	0.072	0.15	0.027	0.09	0.0162	
6 th Q	0.12	0.054	0.06	0.018	0.03	0.0126	
2 nd BN2 - 9 th Q	60	1.8	30	1.08	21	0.54	

Area classification (CERN Safety Code F)*

BUMP 1	1 hour	1 day	1 week	
1 st Q- 1 st BN2	high-radiation area	high-radiation area	high-radiation area	
2 nd Q	high-radiation area	high-radiation area	high-radiation area	
3 rd Q - 1 st BN3	high-radiation area	limited-stay controlled area	limited-stay controlled area	
4 th Q	high-radiation area	limited-stay controlled area	limited-stay controlled area	
2 nd BN3 - 7 th Q	high-radiation area	high-radiation area	high-radiation area	
8 th Q	high-radiation area	high-radiation area	limited-stay controlled area	
5 th Q	limited-stay controlled area	limited-stay controlled area	limited-stay controlled area	
6 th Q	limited-stay controlled area	limited-stay controlled area	simple controlled radiation area (NO p.w.)	
2 nd BN2 - 9 th Q	high-radiation area	high-radiation area	high-radiation area	

Residual Ambient Dose Equivalent Rate at 1 m from the beamline (mSv h⁻¹)

	11	1		1d	1w	
BOIMP 2	۶He	¹⁸ Ne	۴He	¹⁸ Ne	⁶ He	¹⁸ Ne
1 st Q- 1 st BN2	15	1.8	12	0.72	7.5	0.54
2 nd Q	1.2	27	0.6	10.8	0.3	5.4
3 rd Q - 1 st BN3	2.7	3.6	1.2	1.44	0.6	1.08
4 th Q	1.2	3.6	0.6	1.62	0.3	0.72
2 nd BN3 - 7 th Q	90	0.9	60	0.54	33	0.27
8 th Q	1.5	5.4	0.9	3.6	0.45	1.44
5 th Q	0.45	0.126	0.3	0.054	0.18	0.027
6 th Q	0.06	0.027	0.03	0.0162	0.024	0.0054
2 nd BN2 - 9 th Q	60	3.6	30	1.62	18	0.9

Area classification (CERN Safety Code F)*

BUMP 2	1 hour	1 day	1 week	
1 st Q- 1 st BN2	high-radiation area	high-radiation area	high-radiation area	
2 nd Q	high-radiation area	high-radiation area	high-radiation area	
3 rd Q - 1 st BN3	high-radiation area	limited-stay controlled area	limited-stay controlled area	
4 th Q	high-radiation area	limited-stay controlled area	limited-stay controlled area	
2 nd BN3 - 7 th Q	high-radiation area	high-radiation area	high-radiation area	
8 th Q	high-radiation area	high-radiation area	limited-stay controlled area	
5 th Q	limited-stay controlled area	limited-stay controlled area	limited-stay controlled area	
6 th Q	limited-stay controlled area	limited-stay simple controlled area	limited-stay simple controlled area	
2 nd BN2 - 9 th Q	high-radiation area	high-radiation area	high-radiation area	

⁶He, Bump 2, 3rd arc (worst case): residual dose rate after 1 h

Residual Ambient Dose Equivalent Rate at 1 m from the beamline (mSv h⁻¹)

	1h		1	d	1w	
ARCS	⁶ He	¹⁸ Ne	⁶ He	¹⁸ Ne	۶He	¹⁸ Ne
Arc 1 (entrance)	9	21.6	7.5	14.4	3	5.4
Arc 2 (entrance)	24	54	15	21.6	7.5	10.8
Arc (worst cell)	1.2	5.4	0.45	3.6	0.3	1.44

Area classification (CERN Safety Code F)

	1 hour	1 day	1 week	
Arc 1 (entrance)	high-radiation area	high-radiation area	high-radiation area	
Arc 2 (entrance)	high-radiation area	high-radiation area	high-radiation area	
Arc (worst case) high-radiation area		high-radiation area	limited-stay controlled area	

¹⁸Ne, arc 1. Residual dose rates (µSv h⁻¹)

¹⁸Ne, arc 1. Residual dose rates (µSv h⁻¹)

¹⁸Ne, arc 1. Residual dose rates (µSv h⁻¹)

Dominant residual radionuclides in the bump magnets (worst case) after 1 hour (⁶He)

Pipe		Yoke		Со	ils
Radionuclide	A (Bq g ⁻¹)	Radionuclide	A (Bq g ⁻¹)	Radionuclide	A (Bq g ⁻¹)
Cr-51	2.15E+05	Cr-51	7.50E+05	Cu-61	2.71E+05
Mn-56	1.16E+05	V-48	3.11E+05	Co-58	2.05E+05
V-48	9.17E+04	Mn-52	2.68E+05	Cr-51	8.81F+04
Mn-52	4.91E+04	Mn-54	2.36E+05	Co 57	5.885+04
Sc-44	4.62E+04	Mn-56	2 24E+05	0.64	3.000-04
Mn-54	4.05E+04	Eo EE	1 545+05	C0-61	4.92E+04
SC-44m	2.50E+04	FE-33	1.346+05	Co-56	4.89E+04
11-45	2.50E+04	Sc-44	1.29E+05	V-48	3.68E+04
	1.32E+04	Ti-45	7.32E+04	Mn-52	2.81E+04
Na-24	1.23E+04 8 13E+03	Co-56	2.87E+04	Mn-54	2.53E+04
	0.132103			Mn-56	2 19F+04
				Ni 65	2.005+04
					2.00E+04
				Sc-44	1.93F+04

1.78E+04

Ni-57

Airborne activity in DR

⁶He case. F = 10000 m³ h⁻¹ Tunnel volume = 86852 m³ Exit duct volume = 300 m³

Radionuclide	Half-life	Annual dose (μSv)	
Ar-41	hours	6.94E-03	ISOLDE conversion
N-13	minutes	1.26E-03	coencients
C-11	minutes	1.60E+00	
Be-7	months	3.88E-01	The total annual
O-15	minutes	9.27E-01	dose is of 4.5 uSv
CI-39	minutes	3.54E-03	
CI-38	minutes	6.16E-02	
P-32	days	1.38E-01	
Na-24	hours	3.47E-03	
0-14	seconds	9.29E-03	

Airborne activity in DR

¹⁸Ne case. F = 10000 m³ h⁻¹ Tunnel volume = 86852 m³ Exit duct volume = 300 m³

Radionuclide	Half-life	Annual dose (mSv)	
Ar-41	hours	1.50E+00	ISOLDE conversion
N-13	minutes	1.43E+00	coencients
C-11	minutes	1.36E+00	
Be-7	months	5.89E-01	The total annual
0-15	minutes	2.52E-01	dose is of 5.6 u.Sv
CI-39	minutes	1.86E-01	
CI-38	minutes	8.12E-02	
P-32	days	7.71E-02	
Na-24	hours	5.63E-02	
0-14	seconds	2.07E-02	

Some considerations

- 100 mSv h⁻¹ is the maximum limit for access to areas.
- In the calculations safety margins are not included (usually a factor of 3 for doses).
- For the airborne activity released in the environment only decay losses have been considered. The total annual dose exceeds the "limit-per-machine" of 1 μ Sv.

STATUS OF THE RP STUDIES

Residual dose rates during maintenance (WORST CASES)

Residual Ambient Dose Equivalent Rate at 1 m distance from the beam line (mSv h^{-1})				
	RCS (quad - ¹⁸ Ne)	PS (dip - ⁶ He)	SPS	DR (2 nd BN3 - 7 th Q, bump 1,2)
1 hour	15	1	-	90
1 day	3	0.5	_	60
1 week	2	0.25	_	30

Airborne activity released in the environment: dose to the reference population

Annual Effective Dose to the Reference Population (μ Sv)					
RCS	PS	SPS	DR		
0.67	0.64	-	5.6 (only decay losses)		

PARAMETERS	RCS	PS	DR
F	10000 m ³ h ⁻¹	40000 m ³ h ⁻¹	10000 m ³ h ⁻¹
Exit Duct Volume	20 m ³	0 m ³	300 m ³

Summary

DONE

- RCS: all studies completed
- PS: ⁶He case (residual doses and airborne activity)
- DR: decay loss studies completed

TO DO

- PS: ¹⁸Ne case (residual doses and airborne activity)
- PS: residual radionuclides for ⁶He and ¹⁸Ne cases.
- SPS: all studies
- DR: injection and collimation loss studies

thanks for your attention!