

Heavy ion accelerator task (6) Sub task: normal conducting injector

A Dedicated β-beam Linac concept

presented by

Alexander Bechtold (IAP, Frankfurt)

Involved key persons:

H. Podlech, U. Ratzinger, A. Schempp

Outline

- Introduction (current activities at the IAP)
- A n.c. RFQ injector for EURISOLs post accelerator (task 6)
- Existing light ion linac concepts (SNS, CERN, GSI)
- Advantages of H-mode Cavities
- > Our 1st order β -beam linac concept
- > RFQ for β -beams (first beam dynamics)
- Conclusion

Introduction

New building

Medicine RFQ

SARAF CW RFQ

CH - SC

5th $\beta\text{-beam}$ Task Meeting, 3rd-4th May 2007, Stockholm

http://linac-world.de

Current Status of the MAFF test Set Up

EURISOL task 6 "Heavy Ion Accelerator"

Investigations on the MAFF RFQ with special respect to EURISOL requirements

5th β-beam Task Meeting, 3rd-4th May 2007, Stockholm

http://linac-world.de

A normal conducting RFQ tandem as an injector for EURISOL superconducting QWRs

	NC-RFQ1		NC-RFQ2		
1	387 cm		395 cm		
f_0	88 MHz		88 MHz		
m/q	≤9.52		≤9.52		
W _{in}	$2.35 \text{ keV/u} \rightarrow 5 \text{keV/u}$		260 keV/u		
W _{out}	260 keV/u		460 keV/u		
a	0.43 cm		0.43 cm		
V _{el}	60 kV		60 kV		
P _{RF}	131 kW		131 kW		
duty cycle	10	100%		100%	
$\varepsilon_{\rm rms,n}$ input	0.1 mm mrad		0.104 mm mrad		
T (0 mA/7.5 mA)	100%	7.9%	99.8%	<u>4.4%</u>	
$\Delta \varepsilon_{\rm t} (0 {\rm mA}/7.V{\rm mA})$	4%	0	0%	1.7⁄0	
$\Delta W (0 \text{ mA}/75 \text{ mA})$	1.2%	256	1%	12	
$\Delta \varphi (0 \text{ mA/7.5 mA})$	±17°	±23°	±15°	±18°	

5th β -beam Task Meeting, 3rd-4th May 2007, Stockholm

Ξ

Design Study

http://linac-world.de

Comparison of the 4-rod and the IH RFQ structures

Scheme of the 4-rod RFQ

Advantages:

easy mechanical accessibility - cheap production of parts - lots of RF tuning opportunities (Flatness), thermal expansion in only one direction.

Scheme of the IH RFQ

Advantages:

less power consumption - advantageous power dissipation on electrodes (10% inst. 30%) - less dipole - easy adjustment.

Comparison of the 4-rod and the IH RFQ structures

REX ISOLDE 4-rod-RFQ

MAFF IH-RFQ

5th β-beam Task Meeting, 3rd-4th May 2007, Stockholm

http://linac-world.de

starting point

input energy	8 keV/u
Final energy	100 MeV/u
mass to charge ratio	≤ 3
duty cycle	0.05 %
beam current	50 mA
Input emittance (rms, normalized)	0.2π mm mrad (?)

First conclusions from that:

beam loading quite high (approximately 200 kW/cavity pulsed) \rightarrow normal conductivity. So one would need big Klystrons anyhow.

Operating costs are cheap at r.t. due to low duty cycle (very small thermal loads).

Example I: The SNS Linac

Proton beam energy on target	1.0	GeV
Proton beam current on target	1.4	mA
Proton beam power on target	1.4	MW
Pulse repetition rate	60	Hz
Beam macropulse duty factor	6	%
H- peak current from front end	>38	mA
Aver. current per macropulse	26	mA
Chopper beam-on duty factor	68	%
Linac length, incl. front end	335	m
Ring circumference	248	m
Ring fill time	1	ms
Ring extraction gap	250	ns
Protons per pulse on target	1.5×10^{14}	
Liquid mercury target	18 tons	1 m^3
Number of moderators	4	
Minimum initial instruments	8	

5th β-beam Task Meeting, 3rd-4th May 2007, Stockholm

http://linac-world.de

The Family of H-mode cavities

H-mode DTL- cavities

rt IH

E< 30 MeV 30<f<250 MHz rt CH

E< 150 MeV 150<f<700 MHz sc CH

E< 150 MeV 150<f<700 MHz

5th $\beta\text{-beam}$ Task Meeting, 3rd-4th May 2007, Stockholm

http://linac-world.de

r.t. CH-prototype for FAIR

The 2 kW level (4kW/m, ~ 310 kV) has been reached within 20 minutes Measured Q_0 : 13000 (95 % Ideal MWS Value)

5th $\beta\text{-beam}$ Task Meeting, 3rd-4th May 2007, Stockholm

http://linac-world.de

Effective shunt impedance vs. beta (including the synchronous phase)

http://linac-world.de

Beam dynamics (KONUS) code: LORASR

KONUS (Combined Zero Degree Structure)

0-degree-sections reduce rf defocusing → Less focusing elements required

- \rightarrow long lens free sections (cheaper)
- \rightarrow slim drift tubes \rightarrow
- → high shunt impedance

 \rightarrow Strong triplet-channel

Properties of CH-structures

- High efficiency (Z) for low and medium energies (0.1 $\leq\beta\leq$ 0.5)
- Homogeneous distribution of losses
 → Good cooling possibilities
- Possible cw operation
- Use of KONUS → Less rf defocusing
 - → long lensfree sections
- High real estate gradients
- High mechanical stability

- H Cavity H₂₁₁ - Mode
- Room temperature- and superconducting operation

5th β -beam Task Meeting, 3rd-4th May 2007, Stockholm

http://linac-world.de

A DEDICATED β -BEAM RFQ CONCEPT

5th β-beam Task Meeting, 3rd-4th May 2007, Stockholm

DEDICATED β-BEAM RFQ PARAMETERS		
length l	275 cm	
frequency f ₀	176 MHz	
mass to charge ratio m/q	≤3	
input energy W _{in}	8 keV/u	
output energy W _{out}	1 MeV/u	
electrode voltage V _{el}	95 kV	
input emittance total	50 mm mrad	
transmission T (50 mA)	97%	

http://linac-world.de

Conclusions

- H-mode cavities are very attractive for β-beam application
- A frequency of 352 MHz is reasonable with respect to the costs for power supplies (Klystrons)
- There is a reasonable 1st order concept for a dedicated high efficient β-beam linac
- There are some concrete suggestions for β -beam RFQ design

5th β -beam Task Meeting, 3rd-4th May 2007, Stockholm

http://linac-world.de

Next possible steps

- We now would need some more detailed investigations on cavity designs as well as on beam dynamics
- Approximately 6 man month would be required to do so. (Ph. D. Thesis??)