

## Collimation and Magnet Protection for beta-beams in the PS

<u>M. Kirk</u>, P. Spiller, J. Stadlmann, C. Omet FAIR Synchrotrons Group GSI Darmstadt

Beta-beam task group meeting Manne Siegbahn Institute, Stockholm, 2007





- Transmission of primary beam through a collimator
- Composition of the coil insulation
- Collimator thickness and dose rate in coil insulaton for a naïve beam-target geometry
- Realistic FLUKA target geometry
- Loss patterns with a single collimator
- Simplified beam distribution for FLUKA
- Fluence of all transportable products
- Dose rate spatial distribution over regions of the insulation
- Estimated lifetime of coil insulation
- Summary and outlook



## **Projectile ranges in targets**

Transport with FLUKA code: Pencil beam along Z and orthogonal to block.



# Composition of the coil insulation



Coil insulation: Epoxy fibre glass resin (4mm thick)

Mainly consists of glass type E (80%). 100% assumed in model.

| Chemical                       | Fraction of mass |
|--------------------------------|------------------|
| SiO <sub>2</sub>               | 52-56 %          |
| Alkaline Oxides                | 0-2 %            |
| CaO                            | 16-25 %          |
| MgO                            | 0-5%             |
| $B_2O_3$                       | 5-10%            |
| Al <sub>2</sub> O3             | 12-16%           |
| TiO <sub>2</sub>               | 0-0.8%           |
| Fe <sub>2</sub> O <sub>3</sub> | 0.05-0.4%        |
| F <sub>2</sub>                 | 0-1%             |
|                                |                  |

## **Collimator length and dose rate**

Rectangular uniform beam spot, beam perpendicular to target.

Ne-beam



## **Collimator length and dose rate**

Rectangular uniform beam spot, beam perpendicular to target.



### **Initial test geometry**



E



## **Dose in the coil insulation**



ľ

For a carbon collimator with 1m length



## Sketch - magnet geometry

FLUKA geometry: vertical cross-section of beamline section around magnet

Initial beam distribution generated by StrahlSim (C. Omet)



Fig. (51)

### Sketch - beam geometry



Beta Beams in

Beam profile along X approximated to random uniform Beam profile along Y is Gaussian with FWHM specified as input in FLUKA



FLUKA geometry: PS combined function D-magnet (beam into page)





#### FLUKA geometry: PS combined function D-magnet





FLUKA geometry: PS combined function D-magnet. Beam into page.





#### FLUKA geometry: PS combined function D-magnet





FLUKA geometry: PS combined function D-magnet (beam from left to right)



#### Components



FLUKA geometry: main components

Coils:

- 2 pancakes coils per pole (copper)
- Holes in copper through which water flows
- Insulation: Epoxy Fibreglass (100% glass assumed)

Yoke:

- Iron
- Length 427 cm = (41.7+1)x10 such blocks (curvature neglected)
- Shape of poles approximated with flat surfaces

Beampipe:

- Stainless Steel
- Elliptical
- Outer dimensions: horiz. Rx=7.4cm, vert. Ry=3.5cm
- Inner dimensions: Rx=7.3cm, Ry=3.4cm

### **Dose distributions**



- \* He and Ne losses negligible. Li and F losses dominant.
- \* Collimator edge 3cm from beam axis.
- \* StrahlSim provides the mean angle of incidence and Li/F loss rates along the collimator and beampipe surfaces upto end of D-magnet
- \* Full width in horizontal (randon uniform) and Gaussian in Y

### **Beam distribution averaged**

Beam pattern: average angle of incidence and loss rates impinging the collimator and section of pipe upto end of D-magnet – calculated from StrahlSim output files

| Primary ions | Collimator? | Loss rate [prim./sec]             |                   | PS repitition<br>time [s] | Mean angle of incidence [rad] |             |
|--------------|-------------|-----------------------------------|-------------------|---------------------------|-------------------------------|-------------|
|              |             | In straight<br>before<br>D-magnet | After<br>D-magnet |                           | In straight                   | In D-magnet |
| 18F9+        | No          | 5.83E8                            | 2.15E9            | 3.6                       | 0.017                         | 0.022       |
|              | Yes         | 3.35E9                            | 1.02E-3           | 3.6                       | 0.017                         | 0.022       |
| 6Li3+        | No          | 2.40E9                            | 6.51E9            | 6                         | 0.031                         | 0.035       |
|              | Yes         | 8.21E9                            | 7.07E8            | 6                         | 0.031                         | 0.035       |



#### **Beam widths**



Beam pattern: average angle of incidence and loss rates impinging the collimator and section of pipe upto end of D-magnet – calculated from StrahlSim output files

| Primary ions | Collimator? | In straight before<br>D-magnet |                   | After<br>D-magnet |                   |
|--------------|-------------|--------------------------------|-------------------|-------------------|-------------------|
|              |             | Width in x [cm]                | FWHM in y<br>[cm] | Width in x [cm]   | FWHM in y<br>[cm] |
| 18F9+        | No          | 1.6732                         | 0.93              | 4.859             | 0.93              |
|              | Yes         | 5.9732                         | 0.93              | -                 | -                 |
| 6Li3+        | No          | 3.063                          | 1.2               | 7.889             | 1.2               |
|              | Yes         | 7.3625                         | 1.2               | 3.17669           | 1.2               |

### **Beam losses on collimator**

He-beam. Generated by StrahlSim.



Fig. Fig.

#### **Beam losses on collimator**



#### Ne-beam





### **Fluence distribution**



#### All transportable particles

#### <sup>6</sup>Li<sup>3+</sup> 0.5 GeV/u → C collimator



Z=14cm

5

### **Fluence distribution**



#### All transportable particles

<sup>6</sup>Li<sup>3+</sup> 0.5 GeV/u  $\rightarrow$  pipe (no collimator)



#### Z=18cm

5

# Dose rate distribution of the coils

Example: Insulation: top front straight: bottom horizontal sheet

 $^{18}F^{9+}$  1.1 GeV/u  $\rightarrow$  C collimator

Maximum dose rate:

Beta Beams in

Coil will fail here first! -5 -10 Towards yoke -15 [cm] -20 -25 -3010 15 0 5 20 25 30 35 x [cm]

6 - 5

# Dose rate distribution of the coils



Example: Insulation: top front straight: front vertical sheet

 $^{18}F^{9+}$  1.1 GeV/u  $\rightarrow$  C collimator



#### **Dose rates and lifetimes**



He-beam pattern: average angle of incidence and loss rates impinging the collimator and section of pipe upto end ofD-magnet – calculated by StrahlSim



#### **Dose rates and lifetimes**



Ne-beam pattern: average angle of incidence and loss rates impinging the collimator and section of pipe upto end of D-magnet – calculated by StrahlSim



6 (C)

## Summary

Beta Beams in **EURISOL** 

- Dose rates and therefore estimated operation lifetimes of the coils in the PS (D-dipole) have been estimated using the FLUKA transport code.
- The variation in the dose fluence spatial distributions seems to agree qualitatively with what would be expected.
- For a maximum possible operational life expectancy, it is better <u>not</u> to use collimation before the magnet, since –for this BEAM and GEOMetry- the fragmentation products from the collimator deposit their energy in the upper and lower straight sections at the front of the magnet.

## Outlook



- The lamination in the magnet -particularly for F9+ hitting the right side of the D-magnet (likewise Li3+ hitting left side of F-magnet)- needs to be looked at.
- What is the activation in the magnet and the collimator after a long exposure?
- Dose rates in the coil insulation at the back of the D-F pair.
- The error bars in the case without collimation (Ne-beam) are rather large. Must simulate with a realistic beam across the whole straight-D-F section.
- Energy spread (PS ramping) in primaries should be introduced; more realistic BEAM distribution.