Production and bunching of RIBs for beta-beams

Pierre Delahaye, ISOLDE

For beta-beams

The beta-beam concept

P. Zucchelli, PLB 2002

•A pure beam of v_e to study the $v_e \rightarrow v_{\mu}$ oscillation

– A beam of $\nu_e,\,\overline{\nu}_e$ from β -decaying nuclides

•A Lorentz boost for a collimated beam (high γ)

- From Wikipedia:

For a boost in an arbitrary direction with velocity \vec{v} it is convenient to decompose the spatial vector \vec{r} into components perpendicular and parallel to the velocity $\vec{v} = \vec{r}_{\perp} + \vec{r}_{\parallel}$. Then only the component \vec{r}_{\parallel} n the direction of is \vec{v} varped' by the gamma factor: $\begin{cases} t' = \gamma \left(t - \frac{\vec{r} \cdot \vec{v}}{c^2} \right) \\ \vec{r'} = \vec{r}_{\perp} + \gamma(\vec{r}_{\parallel} - \vec{v}t) \end{cases}$

 $\theta \rightarrow 1/\gamma$

where now
$$\gamma \equiv \frac{1}{\sqrt{1 - \vec{v} \cdot \vec{v}/c}}$$

P. Delahaye, beta-beam meeting, Stockholm 3-4/05/2007

Lorentz boost

Beta-beams and EURISOL

• CERN baseline scenario

Production of the beta-beams

- Different candidates, ⁶He and ¹⁸Ne as preferred ones
- Factors influencing ion choice
 - Need to produce reasonable amounts of ions
 - Noble gases preferred simple diffusion out of target, gaseous at room temperature.

 ${}_{2}^{6}He \rightarrow {}_{3}^{6}Li \ e^{-}\overline{V}$

 $^{18}_{10}Ne \rightarrow ^{18}_{9}F e^+ v$

Average $E_{cms} = 1.937 \text{ MeV}$

Average $E_{cms} = 1.86 \text{ MeV}$

- Not too short half-life to get reasonable intensities.
- Not too long half-life as otherwise no decay at high energy.
- Avoid potentially dangerous and long-lived decay products.
- Best compromise
 - Helium-6 to produce antineutrinos:
 - Neon-18 to produce neutrinos:
- New ideas
 - ⁸Li, ⁸B Rubbia et al
 - EC decays for monochromatic beams J. Bernabeu et al

The requirements

- The first beta-beams study was aiming for:
 - A beta-beam facility that will run for a "normalized" year of 10⁷ seconds
 - An annual rate of 2.9 10¹⁸ anti-neutrinos (⁶He) and
 - 1.1 10¹⁸ neutrinos (¹⁸Ne) at γ =100

with an lon production in the target to the ECR source:

- ⁶He= 3.3 10¹³ atoms per second
- ¹⁸Ne= 2.1 10¹³ atoms per second
- The often quoted beta-beam facility flux for ten years running is:
 - Anti-neutrinos: 29 10¹⁸ decays along one straight section
 - Neutrinos: 11 10¹⁸ decays along one straight section

State of the art

Production

⁶He⁺

GANIL 2E8/S 2.5kW ¹³C 75 MeV/u on C target, ECR source ISOLDE 1E7/S 5kW 1.4GeV p on MgO target, FEBIAD source LLN, DUBNA, ISAC...

¹⁸Ne⁺

GANIL ~2E8/S 1 kW ²⁰Ne 95 MeV/u on C target, ECR source ISOLDE 1E6/S 5kW 1.4GeV p on CaO target, FEBIAD source LLN, DUBNA, ISAC...

Factor 10⁵ missing

Ionization and bunching

CW

Phoenix 18GHz Grenoble 25% in one charge state Ne >50% on one charge state He

Bunching Afterglow with GTS, Phoenix, MINIMAFIOS Preglow at LPSC >200us pulses

Efficiencies to be optimized
Bunch length to shorten

⁶He production from ⁹Be(n,α) • Using the converter technology

Converter technology: (J. Nolen, NPA 701 (2002) 312c)

- Preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).
- ⁶He production rate is ~2x10¹³ ions/s (dc) for ~200 kW on target

Use of a 4MW target is a priori possible P. Delahaye, beta-beam meeting, Stockholm 3-4/05/2007

Optimized geometry

- Original geometry: T. Stora, E. Bouquerelle, J. Lettry, task 3 internal note
- Optimized geometry: N. Thiollière, J.C. David, V. Blideanu, D. Doré, B. Rapp, D. Ridikas

Soon available as a preprint DAPNIA, CEA Saclay (November 2006) at http://www-dapnia.cea.fr/Documentation/Publications/index.php

Neutron flux selection versus x and z-dimension superposed with converter and BeO containers limits.

The optimized (in terms of in target yields) target geometry to produce ⁶He beams.

Using MCNPX

2 GeV 200 kW → 10¹⁴ in target production ~ fulfills the requirements

¹⁸Ne from a MgO or Al₂O₃ target

Figure 4: Ne released fraction computed with RIBO for 1 m long Al_2O_3 target with two separation walls and three transfer lines geometry [28].

Task 3 internal note from T. Stora et al, feasibility study of the 100kW targets

About 8 10¹¹/s instead of 2.1 10¹³/s out of the target

A factor of ~24 missing

Dedicated experiments for alternative production methods

⁷Li (p,2p)⁶He
¹⁹F (p,n)¹⁹Ne
¹⁹F (p,2n)¹⁸Ne
¹⁶O (³He,n) ¹⁸Ne

> 300 μ A, 30 MeV protons

LLN: Marc Loiselet, Semen Mitrofanov

Light particles at low energy, "cleaner" production

Tests at Louvain-La-Neuve

Routinely 200µA, 30MeV protons

Work in progress ¹⁹F (p,2n)¹⁸Ne

Proton beam: 1 nA 23,30,45 and 65 MeV

Beam dump

Remains to be tested: •¹⁹F(p,2n)¹⁸Ne 65 MeV protons •¹⁶O (³He,n) ¹⁸Ne

Semen Mitrofanov, Marc Loiselet LLN

A new approach

Beam cooling with ionisation losses – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A, <u>568</u> (2006) 475
"Many other applications in a number of different fields may also take profit of <u>intense beams of radioactive ions</u>."

See also: Development of FFAG accelerators and their applications for intense secondary particle production, Y. Mori, NIM A562(2006)591

Other reactions of interest

• ²⁰Ne(p,T)¹⁸Ne

- H.Backhausen et al, RCA,29(1981)1

• ¹⁶O(³He,n)¹⁸Ne

- V.Tatischeff et al, PRC,68(2003)025804

- ¹²C(CO₂,⁶He)¹⁸Ne?
 K.I.Hahn et al, PRC,54(1996)199
- ⁷Li(T,A)⁶He

Multi-ionization and bunching

- Even if the charge breeding is not mandatory, the bunching of a high intensity beam is mandatory
 - 50µs pulses, 10-20Hz repetition
- A high frequency ECR source may do the job
- Preliminary preglow and afterglow studies at 18 and 28GHz at LPSC Grenoble

Multiple targets and ECR sources

Target	ECR
Target	ECR

Target

Target

ECR

- Multiple target and multiple ECR sources
 - Proton beam split between 7 targets i.e. 1.4 MW of protons in total on all targets
 - 1 second accumulation time in the ECR source
 - 0.1 seconds between injections into linac and Accumulation ring
 - Accumulation of 10 bunches in SPS
 - ECR pulse: 2 10¹¹ ions per pulse
 - Annual rate: 1 10¹⁸ (without accumulation ring 4 10¹⁷⁾
 - Drawback: Expensive and complicated!
 - Multiple target and single ECR sources
 - Proton beam split between 7 targets i.e. 1.4 MW of protons in total on all targets
 - 0.1 second accumulation time in the ECR source
 - 0.1 seconds between injections into linac and Accumulation ring
 - Accumulation of 10 bunches in SPS
 - ECR pulse: 1.4 10¹¹ ions per pulse
 - Annual rate: $1 \ 10^{18}$ (without accumulation ring $4 \ 10^{17}$)
 - Drawback: Efficiency in the transport from target to ECR!

Mats Lindroos

- Left: Cycle without accumulation
- Right: Cycle with accumulation. Note that we always produce ions in this case!

Mats Lindroos

Experiments at LPSC Grenoble

ECRIS capabilities

- Pulsed modes of the ECRIS: afterglow and preglow
 - Afterglow: well-known from 10 to 18 GHz (Pb²⁷⁺ LHC beam)
 - Preglow: experimental evidence at LPSC, predicted by a simple model, data analysis under progress.

Present status

- Preglow experiments at 18 and 28GHz for ³He and ²²Ne gases have been achieved, still under analysis (background suppression ¹²C, ¹⁴N, ¹⁶O)
- Collaboration with the Grenoble HMFL for the 60GHz
 magnetic structure
- 60GHz ion source + Gyrotron funding: ANR refused -CPER accepted, under final negociation ~1M€
- Collaboration with the IAP of Nizhniy Novgorod (2006-2008) 37.5 GHz and 75 GHz plasma studies

Preglow pulse time structure with PHOENIX V2 ECR Ion Source

18 GHz : high Magnetic confinement => "large" FWHM ($300 < T < 1100 \ \mu s$) 28 GHz : low magnetic confinement => "short" FWHM ($150 < T < 300 \ \mu s$) 60 GHz T< 50 μs ?

Preglow Intensity and FWHM with PHOENIX V2 ECR Ion Source

Frequency 18 GHz, Pulse length 10 ms, Pulse frequency 10 Hz

Preglow intensity increases with Power, Preglow FWHM remains constant

Neon Ionization Efficiency Study with PHOENIX V2 ECR Ion Source

calibrated leak TL6 = 5*10⁻⁶ mbar.l.s-1
CW operation @ 18 GHz
0₂ buffer Gas

 \Rightarrow Global Ionization Efficiency of Neon is ~100% \Rightarrow Max CW efficiency on one charge state is ~25%

60 GHz ECR Ion Source Prototype (Preliminary Design)

High Axial magnetic confinement

4 T radial magnetic confinement

International Scientific Collaboration Program PICS CNRS - LPSC Grenoble / RAS - IAP Nizhny Novgorod Russia (2006-2008)

- Experimental and theoretical collaboration on pulsed Gyrotron generated ECR plasmas
- Gas dynamic regime with cusp or simple magnetic mirror geometry at IAP (37.5, 75 GHz)
- Classic ECR magnetic bottles (i.e. radial field) at LPSC (18, 28, future 60 GHz)
- He and Ne Efficiency measurements and time structures with different configurations and parameters

LPSC outlook

Objectives: **Bunching capabilities for CW gas injection** • Afterglow time structure: 60GHz <50µs ? • Preglow time structure: 60GHz <50µs ? • Efficiencies He, Ne?

- Performed: Phoenix (1.6T axial, 1.3 T radial)
 - 18 GHz (good confinement) preglow and afterglow regimes
 - 28 GHz (low magnetic confinement vs RF) preglow only
- Summer 2007: A-Phoenix (3T axial, 2T radial) built
 - 18 GHz: B influence on preglow and afterglow regimes
 - 28 GHz: (good confinement) preglow and afterglow regimes
 - 28+18 GHz higher charge states
- Winter 2007: 60 GHz Bitter coils based prototype design (7T axial)
 - Magnetic field influence
- 2008: 60 GHz magnetic bottle
 - Afterglow, preglow regimes in tunable magnetic field confinement
 - End of 2008: 60 GHz injection

Alternative design

Denis Hitz, CEA Grenoble

- Strong confinement
- Large plasma chamber
- No gas mixing 1 charge state (¹⁸Ne¹⁰⁺?)
- Different frequencies 28+35 GHz
- Afterglow only
- Original method for pulsing

several central coils for a good confinement at injection and a weaker confinement at extraction

Injection

Extraction

Pulsing

D. Hitz, CEA Grenoble

Conclusions (1)

- The production of the antineutrinos from the decay of ⁶He seems feasible ~2 10¹³/s
- The production of the neutrinos from the decay of ¹⁸Ne seems difficult
 - In target production too low with the standard techniques (factor 24 missing)

Alternative production techniques

- tests at LLN Marc Loiselet
- magnetic ring with target/stripper C. Rubbia et al
- Alternative candidates

Several target-ion sources units (M. Lindroos)

High intensity beam bunching

- The length of the afterglow and preglow pulses from an ECR source is decreasing rapidly with the frequency (18GHz / 28GHz tests). Is it still true from 28 to 60GHz?
- In CW mode, gas injection, the efficiencies are compatible with those accounted for.
 He:100% Ne: ~30% in one charge state. Is it possible to reach the same efficiencies with any of the two bunching modes?

The 60 GHz prototype is on the way to be funded - it should answer to these questions!

Summary

Present

Future

Production

- kW targets
- simple plasma ion sources
- DC current

→ 2.10⁸ ⁶He^{+ 18}Ne⁺/s

Bunching

14-28 GHz ECR sources
minimum B confinement
relatively low B field
→DC >50% He+; 25% Ne^{x+}
→ Afterglow and preglow pulses with time spread >200µs, efficiency to be optimized

Production

- 100 kW targets
- Or Ring with target/stripper
- → 3.10¹³ ⁶He
- ? \rightarrow 3.10¹³ ¹⁸Ne atom/s

Bunching

- 60GHz source directly coupled
- High B field and power

? \rightarrow ~100% He⁺ ~30% Ne^{x+} ? \rightarrow 50us pulses

Option Several targets

Several targets coupled to several ion sources (M. Lindroos)

Thanks a lot for your attention!

Special thanks to

- Marc Loiselet, S. Mitrofanov, Louvain-La-Neuve
- Thierry Lamy, Thomas Thuillier, Louis Latrasse LPSC Grenoble
- Thierry Stora, Mats Lindroos, CERN-ISOLDE
- Danas Ridikas, Nicolas Thiollière, Jean-Christophe David, CEA Saclay
- The beta-beams collaboration

Open possibilities for the beam bunching

Afterglow: 18GHz 1ms 28GHz 150µs 60GHz – ?<50µs?

1+→n+ 10 - 14 GHz a few % for Kr, Rb, Xe

Gas injection Under investigation Preglow: 18GHz 1ms 28GHz 150µs 60GHz – ?<50µs?

> 1+→n+ ??

Continuous

1+→n+ 14GHz a few % per charge state

Gas injection Under investigation Gas injection 18GHz ~ 100% He ~ 30% Ne on 1 charge state

Rappeler les efficacités demandées

